Shuffle Hashing

\[Time Limit: 2 s\quad Memory Limit: 256 MB
\]

处理出 \(s_1\) 中各个字符出现的次数,然后双指针维护 \(s_2\) 中每一段长度为 \(len(s_1)\) 的串中字符出现的次数,如果存在某一段和 \(s_1\) 的字符次数相同,则是答案。

view
#include <map>
#include <set>
#include <list>
#include <tuple>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e2 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std; int n, m, k;
int cas, tol, T; int cnt[26];
char s1[maxn], s2[maxn]; bool ok() {
for(int i=0; i<26; i++) if(cnt[i]) return 0;
return 1;
} int main() {
scanf("%d", &T);
while(T--) {
mes(cnt, 0);
scanf("%s%s", s1+1, s2+1);
n = strlen(s1+1), m = strlen(s2+1);
if(n>m) {
puts("NO");
continue;
}
for(int i=1; i<=n; i++) cnt[s1[i]-'a']++;
for(int i=1; i<=n; i++) cnt[s2[i]-'a']--;
bool f = 0;
for(int i=n; i<=m; i++) {
if(ok()) f = 1;
if(i==m) break;
cnt[s2[i+1]-'a']--;
cnt[s2[i-n+1]-'a']++;
}
puts(f ? "YES" : "NO");
}
return 0;
}

A and B

\[Time Limit: 1 s\quad Memory Limit: 256 MB
\]

说出来你可能不信,强行 \(oeis\) 过了。

view
#include <map>
#include <set>
#include <list>
#include <tuple>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std; ll n, m;
int cas, tol, T; int main() {
scanf("%d", &T);
while(T--) {
ll a, b;
scanf("%lld%lld", &a, &b);
n = abs(a-b);
ll k=0;
for(; ; k++) {
if(k*(k+1)/2 <= n && n<(k+1)*(k+2)/2) break;
}
ll tk = k*(k+1)/2;
ll ans;
if(n == tk) ans = k;
else {
if(k%2 == 1) {
if((n-tk)%2==1) ans = k+2;
else ans = k+1;
} else {
if((n-tk)%2==1) ans = k+1;
else ans = k+3;
}
}
printf("%lld\n", ans);
}
return 0;
}

Berry Jam

\[Time Limit: 2 s\quad Memory Limit: 256 MB
\]

预处理后半段中 \(1\) 比 \(2\) 多吃 \(x\) 瓶所需要的最少步数,然后枚举前半段中吃到第 \(i\) 瓶处,\(1\) 还需要比 \(2\) 多吃 \(y\) 瓶,然后在后半段预处理中找答案。

view
#include <map>
#include <set>
#include <list>
#include <tuple>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std; int n, m;
int cas, tol, T; int a[maxn];
unordered_map<int, int> mp; int main() {
scanf("%d", &T);
while(T--) {
mp.clear();
scanf("%d", &n);
int y = 0;
for(int i=1; i<=n+n; i++) {
scanf("%d", &a[i]);
y += a[i]==1 ? 1:-1;
}
if(y == 0) {
printf("0\n");
continue;
}
mp[0] = 0;
for(int i=n+1, x=0; i<=n+n; i++) {
x += a[i]==1 ? 1:-1;
if(!mp.count(x)) mp[x] = i-n;
}
// for(auto t : mp) printf("%d %d\n", t.fi, t.se);
int ans = inf;
for(int i=n; i>=0; i--) {
if(mp.count(y))
ans = min(ans, n-i+mp[y]);
if(!i) break;
y -= a[i]==1 ? 1:-1;
}
printf("%d\n", ans);
}
return 0;
}

Segment Tree

\[Time Limit: 2 s\quad Memory Limit: 256 MB
\]

把线段先按 \(l\) 在按 \(r\) 排序,然后枚举第 \(i\) 条线段,判断它可以和哪些线段连边。

可以发现,在枚举第 \(i\) 条线段时,前 \(i-1\) 条线段的 \(l\) 一定都是比我的 \(l\) 小的,所以我其实是需要找到前 \(i-1\) 条线段中,找到所有满足 \(p[i].l \leq p[j].r \leq p[i].r\) 的所有 \(j\)。

这一段区间是连续的,所以我们可以维护一个 \(set\) 的 \(pair\),用来存放前 \(i-1\) 条边的 \(r\) 位置和编号。然后用 \(set\) 的二分来快速找到所有的 \(j\)。

又因为想要形成一棵树,这也就意味着最多只会添加 \(n-1\) 条边,那么整体复杂度就不会太大。

view
#include <map>
#include <set>
#include <list>
#include <tuple>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define l first
#define r second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 5e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std; int n, m;
int cas, tol, T; int fa[maxn];
pii p[maxn];
set<pii> st; int find(int x) {
return fa[x]==x ? x : fa[x]=find(fa[x]);
} bool bind(int x, int y) {
x = find(x), y = find(y);
if(x == y) return 0;
fa[x] = y;
return 1;
} int main() {
scanf("%d", &n);
for(int i=1; i<=n; i++) {
scanf("%d%d", &p[i].l, &p[i].r);
fa[i] = i;
}
sort(p+1, p+1+n);
st.clear();
int sz = 0, f = 1;
for(int i=1; i<=n; i++) {
auto pos = st.lower_bound({p[i].l, -1});
for(auto j = pos; j!=st.end(); j++) {
if((*j).l > p[i].r) break;
sz++;
if(sz==n || !bind(i, (*j).r)) {
f = 0;
break;
}
}
if(!f) break;
st.insert({p[i].r, i});
}
set<int> ans;
for(int i=1; i<=n; i++) ans.insert(find(i));
puts(ans.size()==1&&f ? "YES" : "NO");
return 0;
}

Tests for problem D

\[Time Limit: 2 s\quad Memory Limit: 256 MB
\]

考虑模拟一下第一个样例,它的放置规则是先把 \(1\) 看成整棵树的根,那么可以先确定 \(p[1].r = 2*n\),然后它有两个直接儿子,所以我需要在 \(r\) 前面留两个空给这两个儿子放 \(r\) 用,现在已经没有直接儿子了,为了防止新的交叉出现,接下来我就放上自己的 \(l\),对于下面的儿子也是同理,可以递归处理。

然后就是儿子的 \(l\) 问题了,由于 \(1\) 的各个儿子不能有交叉部分,也就意味着这些得是重合起来的,所以一开始放在最后的 \(r\),其对应的 \(l\) 就应该尽量小,所以我越早放在后面的儿子,应该越晚去 \(dfs\) 确定其 \(l\)。

为了防止数字重复被用到,可以用一个 \(set\) 来维护还可以用的数字。

view
#include <map>
#include <set>
#include <list>
#include <tuple>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define l first
#define r second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 5e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std; int n, m;
int cas, tol, T; set<int> st;
pii p[maxn];
vector<int> g[maxn]; void dfs(int u, int fa) {
int len = g[u].size();
for(int i=0; i<len; i++) if(g[u][i] != fa) {
p[g[u][i]].r = *(--st.end());
st.erase((--st.end()));
}
p[u].l = *(--st.end());
st.erase((--st.end()));
// printf("p%d .l = %d .r = %d\n", u, p[u].l, p[u].r);
for(int i=len-1; ~i; i--) if(g[u][i] != fa) {
dfs(g[u][i], u);
}
} int main() {
scanf("%d", &n);
for(int i=2, u, v; i<=n; i++) {
scanf("%d%d", &u, &v);
g[u].pb(v), g[v].pb(u);
}
p[1].r = 2*n;
for(int i=1; i<2*n; i++) st.insert(i);
dfs(1, 1);
for(int i=1; i<=n; i++) printf("%d %d\n", p[i].l, p[i].r);
return 0;
}
/*
3
1 2
1 3
*/

Educational Codeforces Round 78 (Rated for Div. 2) 题解的更多相关文章

  1. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  2. Educational Codeforces Round 65 (Rated for Div. 2)题解

    Educational Codeforces Round 65 (Rated for Div. 2)题解 题目链接 A. Telephone Number 水题,代码如下: Code #include ...

  3. Educational Codeforces Round 64 (Rated for Div. 2)题解

    Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...

  4. Educational Codeforces Round 60 (Rated for Div. 2) 题解

    Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...

  5. Educational Codeforces Round 58 (Rated for Div. 2) 题解

    Educational Codeforces Round 58 (Rated for Div. 2)  题目总链接:https://codeforces.com/contest/1101 A. Min ...

  6. Educational Codeforces Round 78 (Rated for Div. 2) D. Segment Tree

    链接: https://codeforces.com/contest/1278/problem/D 题意: As the name of the task implies, you are asked ...

  7. Educational Codeforces Round 78 (Rated for Div. 2) C. Berry Jam

    链接: https://codeforces.com/contest/1278/problem/C 题意: Karlsson has recently discovered a huge stock ...

  8. Educational Codeforces Round 78 (Rated for Div. 2) B. A and B

    链接: https://codeforces.com/contest/1278/problem/B 题意: You are given two integers a and b. You can pe ...

  9. Educational Codeforces Round 78 (Rated for Div. 2) A. Shuffle Hashing

    链接: https://codeforces.com/contest/1278/problem/A 题意: Polycarp has built his own web service. Being ...

随机推荐

  1. A bean with that name has already been defined in class path resource [org/springframework/transaction/annotation/ProxyTransactionManagementConfiguration.class] and overriding is disabled

    2019-12-19 13:26:17.594 WARN [main] o.s.boot.web.servlet.context.AnnotationConfigServletWebServerApp ...

  2. codeforces 1260C. Infinite Fence (数学or裴蜀定理)

    只需要验证小间隔在大间隔之间有没有连续的k个 设小间隔为a,大间隔为b,那么a在b之间出现的次数在\(\lfloor \frac{b}{a}\rfloor\)或者\(\lfloor \frac{b}{ ...

  3. 【WPF on .NET Core 3.0】 Stylet演示项目 - 简易图书管理系统(2) - 单元测试

    上一章中我们完成了一个简单的登录功能, 这一章主要演示如何对Stylet工程中的ViewModel进行单元测试. 回忆一下我们的登录逻辑,主要有以下4点: 当"用户名"或" ...

  4. IT兄弟连 Java语法教程 数组 数组的声明

    Java语言支持两种语法格式来定义数组: type[] arrayName; type arrayName[]; 对这两种语法格式而言,通常推荐使用第一种格式,因为第一种格式不仅具有更好的语义,而且具 ...

  5. jQuery 源码分析(十) 数据缓存模块 data详解

    jQuery的数据缓存模块以一种安全的方式为DOM元素附加任意类型的数据,避免了在JavaScript对象和DOM元素之间出现循环引用,以及由此而导致的内存泄漏. 数据缓存模块为DOM元素和JavaS ...

  6. 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)

    [UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...

  7. Python - ^在正则表达式中的作用

    ^在正则表达式中有两个作用,一是表达以什么开头,二是表达对什么取反.有时候经常傻傻的分不清楚,接下来给大家详细介绍该怎么用这个^准备一个python文件test.py,借用re.search函数举例说 ...

  8. asp.net core web api 生成 swagger 文档

    asp.net core web api 生成 swagger 文档 Intro 在前后端分离的开发模式下,文档就显得比较重要,哪个接口要传哪些参数,如果一两个接口还好,口头上直接沟通好就可以了,如果 ...

  9. Libs - Blog签名

    <div id="AllanboltSignature"> <p id="PSignature" style="padding-to ...

  10. C#如何用IL和Emit类通过Calli来实现实例函数与静态函数的调用

    一. 介绍 最近充能看书,在书上看到函数调用可以 " 通过 ldftn 获得函数指针,然后使用 calli 指令 " 来进行调用,并说这种行为 " 类似 C 的函数指针, ...