Educational Codeforces Round 78 (Rated for Div. 2) 题解
Shuffle Hashing
\]
处理出 \(s_1\) 中各个字符出现的次数,然后双指针维护 \(s_2\) 中每一段长度为 \(len(s_1)\) 的串中字符出现的次数,如果存在某一段和 \(s_1\) 的字符次数相同,则是答案。
view
#include <map>
#include <set>
#include <list>
#include <tuple>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e2 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m, k;
int cas, tol, T;
int cnt[26];
char s1[maxn], s2[maxn];
bool ok() {
for(int i=0; i<26; i++) if(cnt[i]) return 0;
return 1;
}
int main() {
scanf("%d", &T);
while(T--) {
mes(cnt, 0);
scanf("%s%s", s1+1, s2+1);
n = strlen(s1+1), m = strlen(s2+1);
if(n>m) {
puts("NO");
continue;
}
for(int i=1; i<=n; i++) cnt[s1[i]-'a']++;
for(int i=1; i<=n; i++) cnt[s2[i]-'a']--;
bool f = 0;
for(int i=n; i<=m; i++) {
if(ok()) f = 1;
if(i==m) break;
cnt[s2[i+1]-'a']--;
cnt[s2[i-n+1]-'a']++;
}
puts(f ? "YES" : "NO");
}
return 0;
}
A and B
\]
说出来你可能不信,强行 \(oeis\) 过了。
view
#include <map>
#include <set>
#include <list>
#include <tuple>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
ll n, m;
int cas, tol, T;
int main() {
scanf("%d", &T);
while(T--) {
ll a, b;
scanf("%lld%lld", &a, &b);
n = abs(a-b);
ll k=0;
for(; ; k++) {
if(k*(k+1)/2 <= n && n<(k+1)*(k+2)/2) break;
}
ll tk = k*(k+1)/2;
ll ans;
if(n == tk) ans = k;
else {
if(k%2 == 1) {
if((n-tk)%2==1) ans = k+2;
else ans = k+1;
} else {
if((n-tk)%2==1) ans = k+1;
else ans = k+3;
}
}
printf("%lld\n", ans);
}
return 0;
}
Berry Jam
\]
预处理后半段中 \(1\) 比 \(2\) 多吃 \(x\) 瓶所需要的最少步数,然后枚举前半段中吃到第 \(i\) 瓶处,\(1\) 还需要比 \(2\) 多吃 \(y\) 瓶,然后在后半段预处理中找答案。
view
#include <map>
#include <set>
#include <list>
#include <tuple>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
int a[maxn];
unordered_map<int, int> mp;
int main() {
scanf("%d", &T);
while(T--) {
mp.clear();
scanf("%d", &n);
int y = 0;
for(int i=1; i<=n+n; i++) {
scanf("%d", &a[i]);
y += a[i]==1 ? 1:-1;
}
if(y == 0) {
printf("0\n");
continue;
}
mp[0] = 0;
for(int i=n+1, x=0; i<=n+n; i++) {
x += a[i]==1 ? 1:-1;
if(!mp.count(x)) mp[x] = i-n;
}
// for(auto t : mp) printf("%d %d\n", t.fi, t.se);
int ans = inf;
for(int i=n; i>=0; i--) {
if(mp.count(y))
ans = min(ans, n-i+mp[y]);
if(!i) break;
y -= a[i]==1 ? 1:-1;
}
printf("%d\n", ans);
}
return 0;
}
Segment Tree
\]
把线段先按 \(l\) 在按 \(r\) 排序,然后枚举第 \(i\) 条线段,判断它可以和哪些线段连边。
可以发现,在枚举第 \(i\) 条线段时,前 \(i-1\) 条线段的 \(l\) 一定都是比我的 \(l\) 小的,所以我其实是需要找到前 \(i-1\) 条线段中,找到所有满足 \(p[i].l \leq p[j].r \leq p[i].r\) 的所有 \(j\)。
这一段区间是连续的,所以我们可以维护一个 \(set\) 的 \(pair\),用来存放前 \(i-1\) 条边的 \(r\) 位置和编号。然后用 \(set\) 的二分来快速找到所有的 \(j\)。
又因为想要形成一棵树,这也就意味着最多只会添加 \(n-1\) 条边,那么整体复杂度就不会太大。
view
#include <map>
#include <set>
#include <list>
#include <tuple>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define l first
#define r second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 5e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
int fa[maxn];
pii p[maxn];
set<pii> st;
int find(int x) {
return fa[x]==x ? x : fa[x]=find(fa[x]);
}
bool bind(int x, int y) {
x = find(x), y = find(y);
if(x == y) return 0;
fa[x] = y;
return 1;
}
int main() {
scanf("%d", &n);
for(int i=1; i<=n; i++) {
scanf("%d%d", &p[i].l, &p[i].r);
fa[i] = i;
}
sort(p+1, p+1+n);
st.clear();
int sz = 0, f = 1;
for(int i=1; i<=n; i++) {
auto pos = st.lower_bound({p[i].l, -1});
for(auto j = pos; j!=st.end(); j++) {
if((*j).l > p[i].r) break;
sz++;
if(sz==n || !bind(i, (*j).r)) {
f = 0;
break;
}
}
if(!f) break;
st.insert({p[i].r, i});
}
set<int> ans;
for(int i=1; i<=n; i++) ans.insert(find(i));
puts(ans.size()==1&&f ? "YES" : "NO");
return 0;
}
Tests for problem D
\]
考虑模拟一下第一个样例,它的放置规则是先把 \(1\) 看成整棵树的根,那么可以先确定 \(p[1].r = 2*n\),然后它有两个直接儿子,所以我需要在 \(r\) 前面留两个空给这两个儿子放 \(r\) 用,现在已经没有直接儿子了,为了防止新的交叉出现,接下来我就放上自己的 \(l\),对于下面的儿子也是同理,可以递归处理。
然后就是儿子的 \(l\) 问题了,由于 \(1\) 的各个儿子不能有交叉部分,也就意味着这些得是重合起来的,所以一开始放在最后的 \(r\),其对应的 \(l\) 就应该尽量小,所以我越早放在后面的儿子,应该越晚去 \(dfs\) 确定其 \(l\)。
为了防止数字重复被用到,可以用一个 \(set\) 来维护还可以用的数字。
view
#include <map>
#include <set>
#include <list>
#include <tuple>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define l first
#define r second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 5e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
set<int> st;
pii p[maxn];
vector<int> g[maxn];
void dfs(int u, int fa) {
int len = g[u].size();
for(int i=0; i<len; i++) if(g[u][i] != fa) {
p[g[u][i]].r = *(--st.end());
st.erase((--st.end()));
}
p[u].l = *(--st.end());
st.erase((--st.end()));
// printf("p%d .l = %d .r = %d\n", u, p[u].l, p[u].r);
for(int i=len-1; ~i; i--) if(g[u][i] != fa) {
dfs(g[u][i], u);
}
}
int main() {
scanf("%d", &n);
for(int i=2, u, v; i<=n; i++) {
scanf("%d%d", &u, &v);
g[u].pb(v), g[v].pb(u);
}
p[1].r = 2*n;
for(int i=1; i<2*n; i++) st.insert(i);
dfs(1, 1);
for(int i=1; i<=n; i++) printf("%d %d\n", p[i].l, p[i].r);
return 0;
}
/*
3
1 2
1 3
*/
Educational Codeforces Round 78 (Rated for Div. 2) 题解的更多相关文章
- Educational Codeforces Round 63 (Rated for Div. 2) 题解
Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...
- Educational Codeforces Round 65 (Rated for Div. 2)题解
Educational Codeforces Round 65 (Rated for Div. 2)题解 题目链接 A. Telephone Number 水题,代码如下: Code #include ...
- Educational Codeforces Round 64 (Rated for Div. 2)题解
Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...
- Educational Codeforces Round 60 (Rated for Div. 2) 题解
Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...
- Educational Codeforces Round 58 (Rated for Div. 2) 题解
Educational Codeforces Round 58 (Rated for Div. 2) 题目总链接:https://codeforces.com/contest/1101 A. Min ...
- Educational Codeforces Round 78 (Rated for Div. 2) D. Segment Tree
链接: https://codeforces.com/contest/1278/problem/D 题意: As the name of the task implies, you are asked ...
- Educational Codeforces Round 78 (Rated for Div. 2) C. Berry Jam
链接: https://codeforces.com/contest/1278/problem/C 题意: Karlsson has recently discovered a huge stock ...
- Educational Codeforces Round 78 (Rated for Div. 2) B. A and B
链接: https://codeforces.com/contest/1278/problem/B 题意: You are given two integers a and b. You can pe ...
- Educational Codeforces Round 78 (Rated for Div. 2) A. Shuffle Hashing
链接: https://codeforces.com/contest/1278/problem/A 题意: Polycarp has built his own web service. Being ...
随机推荐
- A bean with that name has already been defined in class path resource [org/springframework/transaction/annotation/ProxyTransactionManagementConfiguration.class] and overriding is disabled
2019-12-19 13:26:17.594 WARN [main] o.s.boot.web.servlet.context.AnnotationConfigServletWebServerApp ...
- codeforces 1260C. Infinite Fence (数学or裴蜀定理)
只需要验证小间隔在大间隔之间有没有连续的k个 设小间隔为a,大间隔为b,那么a在b之间出现的次数在\(\lfloor \frac{b}{a}\rfloor\)或者\(\lfloor \frac{b}{ ...
- 【WPF on .NET Core 3.0】 Stylet演示项目 - 简易图书管理系统(2) - 单元测试
上一章中我们完成了一个简单的登录功能, 这一章主要演示如何对Stylet工程中的ViewModel进行单元测试. 回忆一下我们的登录逻辑,主要有以下4点: 当"用户名"或" ...
- IT兄弟连 Java语法教程 数组 数组的声明
Java语言支持两种语法格式来定义数组: type[] arrayName; type arrayName[]; 对这两种语法格式而言,通常推荐使用第一种格式,因为第一种格式不仅具有更好的语义,而且具 ...
- jQuery 源码分析(十) 数据缓存模块 data详解
jQuery的数据缓存模块以一种安全的方式为DOM元素附加任意类型的数据,避免了在JavaScript对象和DOM元素之间出现循环引用,以及由此而导致的内存泄漏. 数据缓存模块为DOM元素和JavaS ...
- 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)
[UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...
- Python - ^在正则表达式中的作用
^在正则表达式中有两个作用,一是表达以什么开头,二是表达对什么取反.有时候经常傻傻的分不清楚,接下来给大家详细介绍该怎么用这个^准备一个python文件test.py,借用re.search函数举例说 ...
- asp.net core web api 生成 swagger 文档
asp.net core web api 生成 swagger 文档 Intro 在前后端分离的开发模式下,文档就显得比较重要,哪个接口要传哪些参数,如果一两个接口还好,口头上直接沟通好就可以了,如果 ...
- Libs - Blog签名
<div id="AllanboltSignature"> <p id="PSignature" style="padding-to ...
- C#如何用IL和Emit类通过Calli来实现实例函数与静态函数的调用
一. 介绍 最近充能看书,在书上看到函数调用可以 " 通过 ldftn 获得函数指针,然后使用 calli 指令 " 来进行调用,并说这种行为 " 类似 C 的函数指针, ...