import pandas as pd
import numpy as np

Step 1.加载数据集

# header=0以第一行作为列名
tip = pd.read_csv("lianx.csv",sep=',',header=0)
tip.head()

Step 2.删除第 1,4,7,9,11,13,14列,保存修改

a = list(tip.columns)
print(a)
b = []
c = 0
for i in a:
c= c+1
if c in [1,4,7,9,11,13,14]:
b.append(i)
# print(b)
# 删除列
tip = tip.drop(b,axis=1)
tip.head()

step 3.重命名列列索引依次为

1) alcohol
2) malic_acid
3) alcalinity_of_ash
4) magnesium
5) flavanoids
6) proanthocyanins
7) hue

c = ['alcohol','malic_acid','alcalinity_of_ash','magnesium','flavanoids','proanthocyanins','hue']
b = list(tip.columns[:7])
b2 = list(tip.columns)
print(b)
print(b2)
d = dict(zip(b,c))
print(d)
tip.rename(columns=d,inplace=True)
tip.head()

step 4.将alcohol 这一列的前三行改为NaN

#tip.iloc[:3,0]=np.nan
tip.iloc[:3,0]=np.nan
tip.head()

step 6. 将 alcohol 和 magnesium列的缺失值分别用10和100进行填充

tip['alcohol'] = tip['alcohol'].fillna(10)
tip['magnesium'] = tip['magnesium'].fillna(100)
tip.head()

step 7.创建10以内的10个随机整数

import random
seven = np.random.randint(0,10,10)
seven

step 8.根据上面的随机数,作为行索引,选取alcohol列,赋值为NaN

tip.iloc[seven,0]=np.nan
tip.head()

step 9.统计缺失值得个数

tip.isnull().sum()

Step 10.删除包含缺失值得行

tip.dropna()

Step 11. 让索引重新从0开始

a = list(tip.index)
b = list(range(len(a)))
c = dict(zip(a,b))
tip.rename(index=c)# 映射操作

pandas-缺失值处理的更多相关文章

  1. pandas缺失值处理

    1.检查缺失值 为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法 - 示例1 im ...

  2. Python数据分析(二)pandas缺失值处理

    import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e' ...

  3. Python—关于Pandas缺失值问题(国内唯一)

    获取文中的CSV文件用于代码编程以及文章首发地址,请点击下方超链接 获取CSV,用于编程调试请点这 在本文中,我们将使用Python的Pandas库逐步完成许多不同的数据清理任务.具体而言,我们将重点 ...

  4. Pandas系列(六)-时间序列详解

    内容目录 1. 基础概述 2. 转换时间戳 3. 生成时间戳范围 4. DatetimeIndex 5. DateOffset对象 6. 与时间序列相关的方法 6.1 移动 6.2 频率转换 6.3 ...

  5. Pandas 时间序列

    # 导入相关库 import numpy as np import pandas as pd 在做金融领域方面的分析时,经常会对时间进行一系列的处理.Pandas 内部自带了很多关于时间序列相关的工具 ...

  6. Python 基础(五)

    pandas缺失值处理 import pandas as pd importrandom df01 = pd.DataFrame(np.random.randint(1,9),size = (4,4) ...

  7. Pandas系列(三)-缺失值处理

    内容目录 1. 什么是缺失值 2. 丢弃缺失值 3. 填充缺失值 4. 替换缺失值 5. 使用其他对象填充 数据准备 import pandas as pd import numpy as np in ...

  8. 【学习】数据处理基础知识(缺失值处理)【pandas】

    缺失数据(missing data)大部分数据分析应用中非常常见.pd设计目标之一就是让缺失数据的处理任务尽量轻松. pd 使用浮点值NaN(Not a Number) 表示浮点和非浮点数组中的缺失数 ...

  9. Python Pandas找到缺失值的位置

    python pandas判断缺失值一般采用 isnull(),然而生成的却是所有数据的true/false矩阵,对于庞大的数据dataframe,很难一眼看出来哪个数据缺失,一共有多少个缺失数据,缺 ...

  10. pandas判断缺失值的办法

    参考这篇文章: https://blog.csdn.net/u012387178/article/details/52571725 python pandas判断缺失值一般采用 isnull(),然而 ...

随机推荐

  1. CSP-S需备模板大全

    CSP-S需备模板大全 谨以此文祝愿自己\(CSP-S\,\,2019\,\,\color{red}{RP++!!}\) 算法 二分 while(l<r) { int mid=(l+r+1)&g ...

  2. 【HDU4947】GCD Array(莫比乌斯反演+树状数组)

    点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:将满足\(gcd(i,k)=d\)的\(a_i\)加上\(v\),询问\(\sum_{i=1}^xa_i\). 对于修改操作的推式子 ...

  3. Codeforces Round #603 (Div. 2) C. Everyone is a Winner! 二分

    C. Everyone is a Winner! On the well-known testing system MathForces, a draw of n rating units is ar ...

  4. 实用小工具:VNC的安装

    安装xen时,需要使用vnc工具来进行图形化安装,安装好后启动失败,试了很多办法,最终解决. 1.使用yum安装:yum install tigervnc-server tigervnc-server ...

  5. git 添加add readme.txt 报fatal: pathspec 'readme.txt' did not match any files错误

    刚刚接触git版本管理器,跟着廖雪峰老师的git教程学习,在创建一个新的文件时,使用的是$ git add readme.txt指令,但是报出fatal: pathspec 'readme.txt' ...

  6. ROS下多雷达融合算法

    有些小车车身比较长,如果是一个激光雷达,顾前不顾后,有比较大的视野盲区,这对小车导航定位避障来说都是一个问题,比如AGV小车, 所有想在小车前后各加一个雷达,那问题是ROS的建图或者定位导航都只是支持 ...

  7. C++入门到理解阶段二基础篇(5)——C++流程结构

    1.顺序结构 程序从上到下执行 2.选择结构(判断结构) 判断结构要求程序员指定一个或多个要评估或测试的条件,以及条件为真时要执行的语句(必需的)和条件为假时要执行的语句(可选的). ​ C++ 编程 ...

  8. 记一次收集APP native崩溃信息

    最近在学习 极客时间Android开发高手课 老师推荐了Breakpad开源库来采集native 的crash1.为什么要使用Google Breakpad? 我们在开发过程中,Android JNI ...

  9. vue-品牌管理案例

    品牌管理 分析 获取到 id 和 name ,直接从 data 上面获取 组织出一个对象 把这个对象,调用 数组的 相关方法,添加到 当前 data 上的 list 中 注意:在Vue中,已经实现了数 ...

  10. js延时定时器

    // 获取图片方向延时器 getImageOrientationTimer(context) { if (context.imageTimeout) return; if (context.image ...