HDU - 4370 0 or 1 最短路
参考:https://www.cnblogs.com/hollowstory/p/5670128.html
题意:
给定一个矩阵C, 构造一个A矩阵,满足条件:
1.X12+X13+...X1n=1
2.X1n+X2n+...Xn-1n=1
3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).
使得∑Cij*Xij(1<=i,j<=n)最小。
思路:
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
// #pragma GCC diagnostic error "-std=c++11"
// #pragma comment(linker, "/stack:200000000")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //18
// const int mod = 10007;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
const int maxn = ;
int n;
int dis[maxn],a[maxn][maxn],vis[maxn];
void spfa(int s){
stack<int>q;
for(int i=; i<=n; i++){
dis[i] = a[s][i];
if(i!=s){
q.push(i);
vis[i] = true;
}
else vis[i] = false;
}
dis[s] = inf;
while(!q.empty()){
int u = q.top();q.pop();
vis[u] = false;
for(int i=; i<=n; i++){
if(u==i)continue;
if(dis[i] > dis[u] + a[u][i]){
dis[i] = dis[u] + a[u][i];
if(vis[i] == false)q.push(i), vis[i] = true;
}
}
}
} int main(){
while(~scanf("%d", &n)){
for(int i=; i<=n; i++){
for(int j=; j<=n; j++){
scanf("%d", &a[i][j]);
}
}
spfa();
int ans = dis[n];
int a1 = dis[];
spfa(n);
a1 += dis[n];
printf("%d\n", min(a1, ans));
}
return ;
}
HDU4370
HDU - 4370 0 or 1 最短路的更多相关文章
- HDU 4370 0 or 1 (最短路)
[题目链接](http://acm.hdu.edu.cn/showproblem.ph Problem Description Given a n/n matrix Cij (1<=i,j< ...
- HDU 4370 0 or 1 (最短路+最小环)
0 or 1 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/R Description Given a n*n matrix ...
- HDU - 4370 0 or 1
0 or 1 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- hdu 4370 0 or 1,最短路
题目描述 给定n * n矩阵C ij(1 <= i,j <= n),我们要找到0或1的n * n矩阵X ij(1 <= i,j <= n). 此外,X ij满足以下条件: 1. ...
- HDU 4370 0 or 1(转化为最短路)题解
思路:虽然是最短路专题里的,但也很难想到是最短路,如果能通过这些关系想到图论可能会有些思路.我们把X数组看做邻接矩阵,那么三个条件就转化为了:1.1的出度为1:2.n的入度为1:3.2~n-1的出度等 ...
- HDU 4370 0 or 1(spfa+思维建图+计算最小环)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4370 题目大意:有一个n*n的矩阵Cij(1<=i,j<=n),要找到矩阵Xij(i< ...
- 思维题(转换) HDU 4370 0 or 1
题目传送门 题意:题目巨晦涩的传递出1点和n点的初度等于入度等于1, 其余点出度和入度相等 分析:求最小和可以转换成求最短路,这样符合条件,但是还有一种情况.1点形成一个环,n点也形成一个环,这样也是 ...
- (中等) HDU 4370 0 or 1,建模+Dijkstra。
Description Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij (1<=i,j&l ...
- HDU 4370 0 or 1 (01规划)【Dijkstra】||【spfa】
<题目链接> 题目大意: 一个n*n的01矩阵,满足以下条件 1.X12+X13+...X1n=12.X1n+X2n+...Xn-1n=13.for each i (1<i<n ...
随机推荐
- c&c服务器(command and control server)
远程命令和控制服务器,目标机器可以接收来自服务器的命令,从而达到服务器控制目标机器的目的.该方法常用于病毒木马控制被感染的机器.
- win10安装.NET Framework 3.5方法
win10下默认没有.NET Framework 3.5,但是有时候我们运行一些网络相关的软件要用到它,下面是它的具体安装方法(绝对可以成功) 将系统镜像挂载到虚拟光驱 复制虚拟光驱下的\source ...
- spring-boot-plus集成Spring Boot Admin管理和监控应用
Spring Boot Admin Spring Boot Admin用来管理和监控Spring Boot应用程序 应用程序向我们的Spring Boot Admin Client注册(通过HTTP) ...
- 【iOS】“找不到使用指定主机名的服务器”
今天用 Application Loader 提交 APP 的时,遇到了这个奇葩的问题,如下图: 后来换个网络解决了……我也不知道什么原因,就这么奇葩的弄好了……
- dubbo是如何控制并发数和限流的?
ExecuteLimitFilter ExecuteLimitFilter ,在服务提供者,通过 的 "executes" 统一配置项开启: 表示每服务的每方法最大可并行执行请求数 ...
- CentOS 7.3下使用YUM 安装MySQL5.6
1.检查Linux系统中是否已安装 MySQL rpm -qa | grep mysql 返回空值的话,就说明没有安装 MySQL 注意:在新版本的CentOS7中,默认的数据库已更新为了Mariad ...
- 章节十五、6-log4 2-用默认的配置
一.实例演示 package log4jtutorial; import org.apache.logging.log4j.LogManager; import org.apache.logging. ...
- Docker——理解好镜像和容器的关系
关注公众号,大家可以在公众号后台回复“博客园”,免费获得作者 Java 知识体系/面试必看资料. 镜像也是 docker 的核心组件之一,镜像时容器运行的基础,容器是镜像运行后的形态.前面我们介绍了 ...
- python多线程与多进程及其区别
个人一直觉得对学习任何知识而言,概念是相当重要的.掌握了概念和原理,细节可以留给实践去推敲.掌握的关键在于理解,通过具体的实例和实际操作来感性的体会概念和原理可以起到很好的效果.本文通过一些具体的例子 ...
- LeetCode :2.两数相加 解题报告及算法优化思路
题目连接:2.两数相加 题意 题目难度标为 中等, 因为题意上有一部分理解难度,以及需要数据结构的链表基础. 还不知道到链表的童鞋可以粗略的看下百度百科或者是翻出数据结构的书看一看,通俗一点的语言来解 ...