点云

点云是雷达采集到的信息.

关于点云基本介绍参考https://zhuanlan.zhihu.com/p/22581673

ros中的点云消息结构:http://docs.ros.org/jade/api/sensor_msgs/html/msg/PointCloud2.html

# This message holds a collection of N-dimensional points, which may
# contain additional information such as normals, intensity, etc. The
# point data is stored as a binary blob, its layout described by the
# contents of the "fields" array. # The point cloud data may be organized 2d (image-like) or 1d
# (unordered). Point clouds organized as 2d images may be produced by
# camera depth sensors such as stereo or time-of-flight. # Time of sensor data acquisition, and the coordinate frame ID (for 3d
# points).
Header header # 2D structure of the point cloud. If the cloud is unordered, height is
# 1 and width is the length of the point cloud.
uint32 height
uint32 width # Describes the channels and their layout in the binary data blob.
PointField[] fields bool is_bigendian # Is this data bigendian?
uint32 point_step # Length of a point in bytes
uint32 row_step # Length of a row in bytes
uint8[] data # Actual point data, size is (row_step*height) bool is_dense # True if there are no invalid points

PointField结构:http://docs.ros.org/melodic/api/sensor_msgs/html/msg/PointField.html

# This message holds the description of one point entry in the
# PointCloud2 message format.
uint8 INT8 = 1
uint8 UINT8 = 2
uint8 INT16 = 3
uint8 UINT16 = 4
uint8 INT32 = 5
uint8 UINT32 = 6
uint8 FLOAT32 = 7
uint8 FLOAT64 = 8 string name # Name of field
uint32 offset # Offset from start of point struct
uint8 datatype # Datatype enumeration, see above
uint32 count # How many elements in the field

点云消息数据存储在PointCloud2.data中.

示例:

header:  // 点云的头信息
seq: 963 //
stamp: // 时间戳
secs: 1541143772
nsecs: 912011000
frame_id: "/camera_init"
height: 1 // If the cloud is unordered, height is 1 如果cloud 是无序的 height 是 1
width: 852578 //点云的长度
fields: // sensor_msgs/PointField[] fields
-
name: "x"
offset: 0
datatype: 7 // uint8 INT8 = 1
// uint8 UINT8 = 2
// uint8 INT16 = 3
// uint8 UINT16 = 4
// uint8 INT32 = 5
// uint8 UINT32 = 6
// uint8 FLOAT32 = 7
// uint8 FLOAT64 = 8
count: 1
-
name: "y"
offset: 4
datatype: 7
count: 1
-
name: "z"
offset: 8
datatype: 7
count: 1
-
name: "intensity"
offset: 16
datatype: 7
count: 1
is_bigendian: False
point_step: 32 // Length of a point in bytes 一个点占的字节数
row_step: 27282496 // Length of a row in bytes 一行的长度占用的字节数
data: [ .......................................................... ] // Actual point data, size is (row_step*height)
is_dense: True // 没有非法数据点

datatype=7对应的类型为PointField.FLOAT32,size为4.x/y/z的偏移都是正常的.为什么intensity的offset变成了16而不是12呢?ros在包装PointCloud2的时候可能在PointField之间添加了一些额外信息,这点我们在处理的时候要注意一下.同理还有Point与Point之间也可能有额外的信息.


点云rosbag转numpy

参考https://gist.github.com/bigsnarfdude/eeb156dc7b4caca69f5b31037da54708

我们想将PointCloud2格式的msg转换为numpy的矩阵格式.即转换成m行n列,每一列即为x,y,z,intensity...

首先我们希望对msg.data做反序列化处理,即

def msg_to_arr(msg):
arr = np.fromstring(msg.data, dtype_list)

现在问题变成了如何从点云的datatype转到numpy的datatype

DUMMY_FIELD_PREFIX = '__'

# mappings between PointField types and numpy types
type_mappings = [(PointField.INT8, np.dtype('int8')), (PointField.UINT8, np.dtype('uint8')), (PointField.INT16, np.dtype('int16')),
(PointField.UINT16, np.dtype('uint16')), (PointField.INT32, np.dtype('int32')), (PointField.UINT32, np.dtype('uint32')),
(PointField.FLOAT32, np.dtype('float32')), (PointField.FLOAT64, np.dtype('float64'))] pftype_to_nptype = dict(type_mappings)
nptype_to_pftype = dict((nptype, pftype) for pftype, nptype in type_mappings) # sizes (in bytes) of PointField types
pftype_sizes = {PointField.INT8: 1, PointField.UINT8: 1, PointField.INT16: 2, PointField.UINT16: 2,
PointField.INT32: 4, PointField.UINT32: 4, PointField.FLOAT32: 4, PointField.FLOAT64: 8} def fields_to_dtype(fields, point_step):
'''
Convert a list of PointFields to a numpy record datatype.
'''
offset = 0
np_dtype_list = []
for f in fields:
while offset < f.offset:
# might be extra padding between fields
np_dtype_list.append(('%s%d' % (DUMMY_FIELD_PREFIX, offset), np.uint8))
offset += 1 dtype = pftype_to_nptype[f.datatype]
if f.count != 1:
dtype = np.dtype((dtype, f.count)) np_dtype_list.append((f.name, dtype))
offset += pftype_sizes[f.datatype] * f.count # might be extra padding between points
while offset < point_step:
np_dtype_list.append(('%s%d' % (DUMMY_FIELD_PREFIX, offset), np.uint8))
offset += 1 return np_dtype_list

代码逻辑很清楚,pftype_to_nptype和nptype_to_pftype定义了点云消息中数据结构和numpy中数据结构的映射关系.

唯一需要注意的就是前面提到过的ros在包装PointCloud2的时候可能在PointField之间添加了一些额外信息,这点我们在处理的时候要注意一下.同理还有Point与Point之间也可能有额外的信息.  代码里的

        while offset < f.offset:
# might be extra padding between fields
np_dtype_list.append(('%s%d' % (DUMMY_FIELD_PREFIX, offset), np.uint8))
offset += 1 # might be extra padding between points
while offset < point_step:
np_dtype_list.append(('%s%d' % (DUMMY_FIELD_PREFIX, offset), np.uint8))
offset += 1

就是为了处理上述问题.

复现点云检测模型SqueezeSeg检测点云数据

https://blog.csdn.net/AdamShan/article/details/83544089

原文用的py2.7,复现的时候遇到了很多问题

  • conda activate env2.7
  • pip install tensorflow
  • pip install easydict
  • pip install joblib

直接运行squeezeseg_ros_node.py的时候会报如下错误.

错误代码的意思是出错于读launch文件.

npy_path = rospy.get_param('npy_path')

这一句会读launch文件中的配置.

在执行了roslaunch squeezeseg_ros squeeze_seg_ros.launch之后,会报错



这之后再执行python squeezeseg_ros_node.py就可以正常运行了.

点云3D 目标检测的更多相关文章

  1. ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测

    ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测 STD: Sparse-to-Dense 3D Object Detector for Point Cloud 论文链 ...

  2. CVPR2020|3D-VID:基于LiDar Video信息的3D目标检测框架

    作者:蒋天园 Date:2020-04-18 来源:3D-VID:基于LiDar Video信息的3D目标检测框架|CVPR2020 Brief paper地址:https://arxiv.org/p ...

  3. CVPR2019:无人驾驶3D目标检测论文点评

    CVPR2019:无人驾驶3D目标检测论文点评 重读CVPR2019的文章,现在对以下文章进行点评. Stereo R-CNN based 3D Object Detection for Autono ...

  4. CVPR2020论文介绍: 3D 目标检测高效算法

    CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Clo ...

  5. 3D目标检测(CVPR2020:Lidar)

    3D目标检测(CVPR2020:Lidar) LiDAR-Based Online 3D Video Object Detection With Graph-Based Message Passing ...

  6. 点云3d检测模型pointpillar

    PointPillars 一个来自工业界的模型.https://arxiv.org/abs/1812.05784 3D目标检测通常做法 3d卷积 投影到前平面 在bird-view上操作 处理思路依然 ...

  7. 三维目标检测论文阅读:Deep Continuous Fusion for Multi-Sensor 3D Object Detection

    题目:Deep Continuous Fusion for Multi-Sensor 3D Object Detection 来自:Uber: Ming Liang Note: 没有代码,主要看思想吧 ...

  8. CVPR2020:利用图像投票增强点云中的三维目标检测(ImVoteNet)

    CVPR2020:利用图像投票增强点云中的三维目标检测(ImVoteNet) ImVoteNet: Boosting 3D Object Detection in Point Clouds With ...

  9. Faster R-CNN:详解目标检测的实现过程

    本文详细解释了 Faster R-CNN 的网络架构和工作流,一步步带领读者理解目标检测的工作原理,作者本人也提供了 Luminoth 实现,供大家参考.   Luminoth 实现:https:// ...

随机推荐

  1. mysql的repeat()函数

    用来复制字符串,如下'ab'表示要复制的字符串,2表示复制的份数 mysql> select repeat('ab',2); +----------------+ | repeat('ab',2 ...

  2. SpringBoot整合Thymeleaf表单更新操作

    对于表单值回显并更新的逻辑相比大家都已经很熟悉了, 但是我们操作Thymeleaf的话这里就会有一点小坑了, 在要回显值的表单的所有字段上,我们都要加上 th:field,才可以完成回显值更新 或者这 ...

  3. vue非父子关系之间通信传值

    第一种方法: 通过给vue实例添加自定义属性 <!DOCTYPE html> <html> <head> <meta charset="utf-8& ...

  4. ArcGIS api for JavaScript 3.27 FindTask查询功能

    在ArcGIS API中查询功能是经常使用的,常用的三个查询分别是FindTask,QueryTask,IdentifyTask.它们各自都有自己的特点. 查询功能分为属性查询和空间查询 FindTa ...

  5. cesium 入门开发系列地图鹰眼功能(附源码下载)

    前言 cesium 入门开发系列环境知识点了解:cesium api文档介绍,详细介绍 cesium 每个类的函数以及属性等等cesium 在线例子 内容概览 cesium 结合 leaflet 实现 ...

  6. 框架用多了真的会死人的,spring-cloud全家桶与mybitais 集成完整示例(附下载)

    ​ 题外话: 看到这一长串包含各种技术名词的标题,一路走来感觉研发深深的被各种框架给绑架了,从我们刚出生最简单的jsp,servlet打天下,到spring mvc的盛行,再到现在spring-boo ...

  7. Django 使用form表单提交数据报错: Forbidden (403)

    Issue: 使用from表单submit之后报错入下: Action: 把django工程文件的setting.py中的'django.middleware.csrf.CsrfViewMiddlew ...

  8. LInux:网络连接的设置

    主机名的配置 主机名的配置(配置文件/etc/hostname) 1.使用 hostname 命令临时设置主机名 命令格式:hostname [新主机名] 2.永久设置主机名 命令格式:hostnam ...

  9. STL 中 list 的使用

    list 容器实现了双向链表的数据结构,数据元素是通过链表指针串连成逻辑意义上的线性表,这样,对链表的任一位置的元素进行插入.删除和查找都是极快速的.由于list对象的节点并不要求在一段连续的内存中, ...

  10. 问题解决:ImportError: No module named tensorflow

    环境: python3.5.3+pycharm2018.2EAP 问题描述: Pycharm编译报错 ImportError: No module named tensorflow 解决方法: ten ...