题意:给你n个活动的起止时间,要你从中选一些活动在2个会场安排(不能有两个活动在两个会场同时进行),使活动较少的会场活动数最大,以及在某个活动必须选择的前提下,求该答案。

思路:由于n很小,时间很大,先将时间离散化,num[l][r]表示全部在[l,r]内的活动个数,pre[i][j]表示前i的时间内给一边j个另一边最多有几个,则用1<=k<=i更新pre[i][j]=max(pre[k][j]+num[k][j],pre[k][j-num[k][i]]),第一问答案是min(pre[time][k],k)中的最大值

第二问,相当于一段区间s[i],t[i]必选,对于l<=s[i],r>=t[i],算出f[l][r] = min(x+y,pre[l][x]+num[l][r]+suf[r][y])中的最大值,x+y关于x,y单增,pre[l][x]+num[l][r]+suf[r][y]关于x,y单减,x,y不会同时变大或变小,所以从小到大枚举x时,y从大到小...

 #include<bits/stdc++.h>
#define fo(x) freopen(x".in","r",stdin); freopen(x".out","w",stdout);
using namespace std;
inline int read(){
char ch=getchar();
int res=,f=;
while(!isdigit(ch))f^=(ch=='-'),ch=getchar();
while(isdigit(ch))res=(res+(res<<)<<)+(ch^),ch=getchar();
return res*f;
}
const int N=;
int n,s[N],t[N],a[N],cnt,pre[N][N],suf[N][N],f[N][N],num[N][N];
inline void chemx(int &a,int b){
a=a>b?a:b;
}
inline void chemn(int &a,int b){
a=a>b?b:a;
}
#define calc(a,b) (min((a+b),(pre[l][a]+num[l][r]+suf[r][b])))
int main(){
fo("noi2011_show");
n=read();
for(int i=;i<=n;i++)s[i]=read(),a[++cnt]=s[i],t[i]=read()+s[i],a[++cnt]=t[i];
sort(a+,a+cnt+);
cnt=unique(a+,a+cnt+)-a-;
for(int i=;i<=n;i++){
s[i]=lower_bound(a+,a+cnt+,s[i])-a;
t[i]=lower_bound(a+,a+cnt+,t[i])-a;
for(int l=;l<=s[i];l++)
for(int r=t[i];r<=cnt;r++)num[l][r]++;
}
for(int i=;i<=cnt;i++)
for(int j=;j<=n;j++)pre[i][j]=suf[i][j]=-1e9;
for(int i=;i<=cnt;i++)
for(int j=;j<=num[][i];j++)
for(int k=;k<=i;k++){
chemx(pre[i][j],pre[k][j]+num[k][i]);
if(j>=num[k][i])chemx(pre[i][j],pre[k][j-num[k][i]]);
}
for(int i=cnt;i;i--)
for(int j=;j<=num[i][cnt];j++)
for(int k=cnt;k>=i;k--){
chemx(suf[i][j],suf[k][j]+num[i][k]);
if(j>=num[i][k])chemx(suf[i][j],max(suf[k][j]+num[i][k],suf[k][j-num[i][k]]));
}
for(int l=;l<=cnt;l++){
for(int r=l;r<=cnt;r++){
for(int x=,y=num[r][cnt];x<=num[][l];x++){
while(y&&calc(x,y)<=calc(x,y-))y--;
chemx(f[l][r],calc(x,y));
}
}
}
int ans=;
for(int i=;i<=cnt;i++)for(int j=;j<=num[][i];j++)chemx(ans,min(pre[i][j],j));
cout<<ans<<'\n';
for(int i=;i<=n;i++){
int res=;
for(int l=s[i];l;l--)
for(int r=t[i];r<=cnt;r++)
chemx(res,f[l][r]);
cout<<res<<'\n';
}
}

cogs 1377. [NOI2011] NOI嘉年华 (dp的更多相关文章

  1. luogu P1973 [NOI2011]NOI 嘉年华 dp

    LINK:NOI 嘉年华 一道质量非常高的dp题目. 考虑如何求出第一问 容易想到dp. 按照左端点排序/右端点排序状态还是很难描述. 但是我们知道在时间上肯定是一次选一段 所以就可以直接利用时间点来 ...

  2. 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)

    2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...

  3. 2436: [Noi2011]Noi嘉年华 - BZOJ

    Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...

  4. bzoj 2436: [Noi2011]Noi嘉年华

    Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...

  5. BZOJ2436 [Noi2011]Noi嘉年华 【dp】

    题目链接 BZOJ2436 题解 看这\(O(n^3)\)的数据范围,可以想到区间\(dp\) 发现同一个会场的活动可以重叠,所以暴力求出\(num[l][r]\)表示离散化后\([l,r]\)的完整 ...

  6. bzoj2436: [Noi2011]Noi嘉年华

    我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...

  7. NOI2011 NOI嘉年华

    http://www.lydsy.com/JudgeOnline/problem.php?id=2436 首先离散化,离散化后时间范围为[1,cnt]. 求出H[i][j],表示时间范围在[i,j]的 ...

  8. 洛谷P1973 [NOI2011]Noi嘉年华(动态规划,决策单调性)

    洛谷题目传送门 DP题怕是都要大大的脑洞...... 首先,时间那么大没用,直接离散化. 第一问还好.根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去.那么我们转 ...

  9. 洛谷P1973 [NOI2011]Noi嘉年华(决策单调性)

    传送门 鉴于FlashHu大佬讲的这么好(而且我根本不会)我就不再讲一遍了->传送 //minamoto #include<iostream> #include<cstdio& ...

随机推荐

  1. TCP加速机制是如何加速的?

    一.什么是TCP加速?   TCP加速就是在高时延链路提高吞吐量的一系列解决方案.   二.为什么需要对TCP进行加速?   1.传统的TCP拥塞控制算法并不适用于高时延.高误码的链路. 2.随着we ...

  2. 【iOS】Xcode 使用 CocoaPods 导入第三方库后没有提示

    Github 上下载的开源项目,运行后出现的 [iOS]build diff: /../Podfile.lock: No such file or directory 解决后,又出现了这个问题. 解决 ...

  3. 统计学习方法6—logistic回归和最大熵模型

    目录 logistic回归和最大熵模型 1. logistic回归模型 1.1 logistic分布 1.2 二项logistic回归模型 1.3 模型参数估计 2. 最大熵模型 2.1 最大熵原理 ...

  4. 20190803 NOIP模拟测试12「斐波那契(fibonacci)· 数颜色 · 分组 」

    164分 rank11/64 这次考的不算太差,但是并没有多大的可能性反超(只比一小部分人高十几分而已),时间分配还是不均,T2两个半小时,T1半个小时,T3-额十几分钟吧 然额付出总是与回报成反比的 ...

  5. JVM(二):画骨

    ### 概述 我们首先来认识一下`JVM`的运行时数据区域,如果说`JVM`是一个人,那么运行时数据区域就是这个人的骨架,它支撑着JVM的运行,所以我们先来学习一下运行时数据区域的分类和简单介绍. # ...

  6. SVG和canvas渲染的性能比较

    1.什么是SVG? 描述: 一种使用XML描述的2D图形的语言 SVG基于XML意味着,SVG DOM中的每个元素都是可用的,可以为某个元素附加Javascript事件处理器. 在 SVG 中,每个被 ...

  7. 想成为顶尖 Java 程序员?请先过了下面这些技术问题。

    一.数据结构与算法基础 说一下几种常见的排序算法和分别的复杂度. 用Java写一个冒泡排序算法 描述一下链式存储结构. 如何遍历一棵二叉树? 倒排一个LinkedList. 用Java写一个递归遍历目 ...

  8. 搞定java String校招面试题

    今天大致的阅读了String类的源码,并刷了常见的面试题,在此做个笔记. 面试题一:判断下列程序运行结果 package String_test; public class test_1 { publ ...

  9. (一)c#Winform自定义控件-基类控件

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  10. Spring Boot之Profile--快速搞定多环境使用与切换

    Spring Profile是Spring3引入的概念,主要用在项目多环境运行的情况下,通过激活方式实现多环境切换,省去多环境切换时配置参数和文件的修改,并且Spring profile提供了多种激活 ...