堆排序(Heap Sort)

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

1.算法描述

  • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
  • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
  • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

2.动图演示



3.代码实现

//javascript实现
var len; // 因为声明的多个函数都需要数据长度,所以把len设置成为全局变量 function buildMaxHeap(arr) { // 建立大顶堆
len = arr.length;
for (var i = Math.floor(len/2); i >= 0; i--) {
heapify(arr, i);
}
} function heapify(arr, i) { // 堆调整
var left = 2 * i + 1,
right = 2 * i + 2,
largest = i; if (left < len && arr[left] > arr[largest]) {
largest = left;
} if (right < len && arr[right] > arr[largest]) {
largest = right;
} if (largest != i) {
swap(arr, i, largest);
heapify(arr, largest);
}
} function swap(arr, i, j) {
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
} function heapSort(arr) {
buildMaxHeap(arr); for (var i = arr.length-1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0);
}
return arr;
}
//java实现
public class HeapSort implements IArraySort { @Override
public int[] sort(int[] sourceArray) throws Exception {
// 对 arr 进行拷贝,不改变参数内容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); int len = arr.length; buildMaxHeap(arr, len); for (int i = len - 1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0, len);
}
return arr;
} private void buildMaxHeap(int[] arr, int len) {
for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
heapify(arr, i, len);
}
} private void heapify(int[] arr, int i, int len) {
int left = 2 * i + 1;
int right = 2 * i + 2;
int largest = i; if (left < len && arr[left] > arr[largest]) {
largest = left;
} if (right < len && arr[right] > arr[largest]) {
largest = right;
} if (largest != i) {
swap(arr, i, largest);
heapify(arr, largest, len);
}
} private void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
} }

【算法】堆排序(Heap Sort)(七)的更多相关文章

  1. 算法----堆排序(heap sort)

    堆排序是利用堆进行排序的高效算法,其能实现O(NlogN)的排序时间复杂度,详细算法分析能够点击堆排序算法时间复杂度分析. 算法实现: 调整堆: void sort::sink(int* a, con ...

  2. 数据结构与算法---堆排序(Heap sort)

    堆排序基本介绍 1.堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序. 2.堆是具有以下性质的完全二叉树:每个 ...

  3. Python入门篇-数据结构堆排序Heap Sort

    Python入门篇-数据结构堆排序Heap Sort 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.堆Heap 堆是一个完全二叉树 每个非叶子结点都要大于或者等于其左右孩子结点 ...

  4. 数据结构 - 堆排序(heap sort) 具体解释 及 代码(C++)

    堆排序(heap sort) 具体解释 及 代码(C++) 本文地址: http://blog.csdn.net/caroline_wendy 堆排序包括两个步骤: 第一步: 是建立大顶堆(从大到小排 ...

  5. 堆排序 Heap Sort

    堆排序虽然叫heap sort,但是和内存上的那个heap并没有实际关系.算法上,堆排序一般使用数组的形式来实现,即binary heap. 我们可以将堆排序所使用的堆int[] heap视为一个完全 ...

  6. 小小c#算法题 - 7 - 堆排序 (Heap Sort)

    在讨论堆排序之前,我们先来讨论一下另外一种排序算法——插入排序.插入排序的逻辑相当简单,先遍历一遍数组找到最小值,然后将这个最小值跟第一个元素交换.然后遍历第一个元素之后的n-1个元素,得到这n-1个 ...

  7. 堆排序Heap sort

    堆排序有点小复杂,分成三块 第一块,什么是堆,什么是最大堆 第二块,怎么将堆调整为最大堆,这部分是重点 第三块,堆排序介绍 第一块,什么是堆,什么是最大堆 什么是堆 这里的堆(二叉堆),指得不是堆栈的 ...

  8. Java实现---堆排序 Heap Sort

    堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先讲解下什么是数据结构中的二叉堆. 堆的定义 n个元素的序列{k1,k2,…,kn}当且仅当满足下列关 ...

  9. [Unity][Heap sort]用Unity动态演示堆排序的过程(How Heap Sort Works)

    [Unity][Heap sort]用Unity动态演示堆排序的过程 How Heap Sort Works 最近做了一个用Unity3D动态演示堆排序过程的程序. I've made this ap ...

随机推荐

  1. (6) 结论,摘要与题目_Conclusion, Abstract, and Title【论文写作】

  2. 一个未知宽高的元素在div中垂直水平居中

    <body> <div id="#div1"> <img src="img1.png"></img> </ ...

  3. testview属性之详解

    安卓开发当中TextView是最常用的组件之一了,那么现在就来详细的了解下TextView的属性: Android:autoLink设置是否当文本为URL链接/email/电话号码/map时,文本显示 ...

  4. C#编写程序,计算数组中奇数之和和偶数之和

    编写程序,计算数组中奇数之和和偶数之和. 代码: using System; using System.Collections.Generic; using System.Linq; using Sy ...

  5. hdfs对文件的增删改查

    源代码: pom.xml: <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&qu ...

  6. jboss学习1之EJB和JBOSS的宏观理解

    一.中间件(Middleware)         先来看一张图:         中间件,也就是图中的Middleware,他的作用是什么呢?        简单来说,中间件就是操作系统和应用程序之 ...

  7. Python入门-字符串格式化

    一.不推荐使用:%号 #正常按照位置传递参数 print('%s asked %s to do something' % ('egon', 'lili')) #先后顺序不能乱 #字典传递参数 prin ...

  8. LC-24

    [24. 两两交换链表中的节点](https://leetcode-cn.com/problems/swap-nodes-in-pairs/) 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的 ...

  9. 如何在 Java 中实现 Dijkstra 最短路算法

    定义 最短路问题的定义为:设 \(G=(V,E)\) 为连通图,图中各边 \((v_i,v_j)\) 有权 \(l_{ij}\) (\(l_{ij}=\infty\) 表示 \(v_i,v_j\) 间 ...

  10. 手把手教会 VS2022 设计 Winform 高DPI兼容程序 (net461 net6.0 双出)

    本文主要解决两个问题 C# Winform高DPI字体模糊. 高DPI下(缩放>100%), UI设计器一直提示缩放到100%, 如果不重启到100%,设计的控件会乱飞. 建立测试程序 新建.N ...