论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》
论文信息
论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination
论文作者:Yizhen Zheng, Shirui Pan, Vincent Cs Lee, Yu Zheng, Philip S. Yu
论文来源:2022,NeurIPS
论文地址:download
论文代码:download
1 Introduction
GCL 需要大量的 Epoch 在数据集上训练,本文的启发来自 GCL 的代表性工作 DGI 和 MVGRL,因为 Sigmoid 函数存在的缺陷,因此,本文提出 Group Discrimination (GD) ,并基于此提出本文的模型 Graph Group Discrimination (GGD)。
Graph ContrastiveLearning 和 Group Discrimination 的区别:

- GD directly discriminates a group of positive nodes from a group of negative nodes.
- GCL maximise the mutual information (MI) between an anchor node and its positive counterparts, sharing similar semantic information while doing the opposite for negative counterparts.
贡献:
- 1) We re-examine existing GCL approaches (e.g., DGI and MVGRL), and we introduce a novel and efficient self-supervised GRL paradigm, namely, Group Discrimination (GD).
- 2) Based on GD, we propose a new self-supervised GRL model, GGD, which is fast in training and convergence, and possess high scalability.
- 3) We conduct extensive experiments on eight datasets, including an extremely large dataset, ogbn-papers100M with billion edges.
2 Rethinking Representative GCL Methods
本节以经典的 DGI 、MVGRL 为例子,说明了互信息最大化并不是对比学习的贡献因素,而是一个新的范式,群体歧视(group discrimination)。
2.1 Rethinking GCL Methods
回顾一下 DGI :

代码:

class DGI(nn.Module):
def __init__(self, g, in_feats, n_hidden, n_layers, activation, dropout):
super(DGI, self).__init__()
self.encoder = Encoder(g, in_feats, n_hidden, n_layers, activation, dropout)
self.discriminator = Discriminator(n_hidden)
self.loss = nn.BCEWithLogitsLoss() def forward(self, features):
positive = self.encoder(features, corrupt=False)
negative = self.encoder(features, corrupt=True)
summary = torch.sigmoid(positive.mean(dim=0))
positive = self.discriminator(positive, summary)
negative = self.discriminator(negative, summary)
l1 = self.loss(positive, torch.ones_like(positive))
l2 = self.loss(negative, torch.zeros_like(negative))
return l1 + l2
本文研究 DGI 结论:一个 Sigmoid 函数不适用于权重被 Xavier 初始化的 GNN 生成的 summary vector,且 summary vector 中的元素非常接近于相同的值。
接着尝试将 Summary vector 中的数值变换成不同的常量 (from 0 to 1):

结论:
- 将 summary vector 中的数值变成 0,求解相似度时导致所有的 score 变成 0,也就是 postive 项的损失函数变成 负无穷,无法优化;
- summary vector 设置其他值,导致 数值不稳定;
DGI 的简化:
① 将 summary vector 设置为 单位向量(缩放对损失不影响);
② 去掉 Discriminator (Bilinear :先做线性变换,再求内积相似度)的权重向量;【双线性层的 $W$ 其实就是一个线性变换层】
$\begin{aligned}\mathcal{L}_{D G I} &=\frac{1}{2 N}\left(\sum\limits _{i=1}^{N} \log \mathcal{D}\left(\mathbf{h}_{i}, \mathbf{s}\right)+\log \left(1-\mathcal{D}\left(\tilde{\mathbf{h}}_{i}, \mathbf{s}\right)\right)\right) \\&\left.=\frac{1}{2 N}\left(\sum\limits_{i=1}^{N} \log \left(\mathbf{h}_{i} \cdot \mathbf{s}\right)+\log \left(1-\tilde{\mathbf{h}}_{i} \cdot \mathbf{s}\right)\right)\right) \\&=\frac{1}{2 N}\left(\sum\limits_{i=1}^{N} \log \left(\operatorname{sum}\left(\mathbf{h}_{i}\right)\right)+\log \left(1-\operatorname{sum}\left(\tilde{\mathbf{h}}_{i}\right)\right)\right)\end{aligned} \quad\quad\quad(1)$
Bilinear :
$\mathcal{D}\left(\mathbf{h}_{i}, \mathbf{s}\right)=\sigma_{s i g}\left(\mathbf{h}_{i} \cdot \mathbf{W} \cdot \mathbf{s}\right)\quad\quad\quad(2)$
实验:替换 $\text{Eq.1}$ 中的 aggregation function ,即 sum 函数

替换形式为:
$\mathcal{L}_{B C E}=-\frac{1}{2 N}\left(\sum\limits _{i=1}^{2 N} y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right)\quad\quad\quad(3)$
其中,$\hat{y}_{i}=\operatorname{agg}\left(\mathbf{h}_{i}\right)$ ,$y_{i} \in \mathbb{R}^{1 \times 1}$ ,$\hat{y}_{i} \in \mathbb{R}^{1 \times 1}$。论文中阐述 $y_{i}$ 和 $\hat{y}_{i}$ 分别代表 node $i$ 是否是 postive sample ,及其预测输出。Q :当 aggregation function 采用 $\text{mean}$ 的时候,对于 postive sample $i$ ,$\hat{y}_{i}$ 值会趋于 $1$ 么?
DGI 真正所做的是区分正确拓扑生成的一组节点和损坏拓扑生成的节点,如 Figure 1 所示。可以这么理解,DGI 是使用一个固定的向量 $s$ 去区分两组节点嵌入矩阵(postive and negative)。

Note:方差大的稍微大一点的 method ,就是容易被诋毁。
3 Methodology
整体框架:

组成部分:
- Siamese Network :模仿 MVGRL 的架构;
- Data Augmentation :提供相似意义信息,带来的是时间成本;【dropout edge、feature mask】
- Loss function : $\text{Eq.3}$;
首先:固定 GNN encoder、MLP predict 的参数,获得初步的节点表示 $\mathbf{H}_{\theta}$;
其次:MVGRL 多视图对比工作给本文深刻的启发,所以考虑引入全局信息 :$ \mathbf{H}_{\theta}^{\text {global }}=\mathbf{A}^{n} \mathbf{H}_{\theta}$;
最后:得到局部表示和全局表示的聚合 $\mathbf{H}=\mathbf{H}_{\theta}^{\text {global }}+\mathbf{H}_{\theta}$ ;
4 Experiments
4.1 Datasets

4.2 Result
节点分类

训练时间 和 内存消耗






5 Future Work
For example, can we extend the current binary Group Discrimination scheme (i.e., classifying nodes generated with different topology) to discrimination among multiple groups?

论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》的更多相关文章
- 论文解读(MLGCL)《Multi-Level Graph Contrastive Learning》
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...
- 论文解读(GRACE)《Deep Graph Contrastive Representation Learning》
Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Fe ...
- 论文解读(GCC)《GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training》
论文信息 论文标题:GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training论文作者:Jiezhong Qiu, Qibi ...
- 论文解读(GCA)《Graph Contrastive Learning with Adaptive Augmentation》
论文信息 论文标题:Graph Contrastive Learning with Adaptive Augmentation论文作者:Yanqiao Zhu.Yichen Xu3.Feng Yu4. ...
- 论文解读(GROC)《Towards Robust Graph Contrastive Learning》
论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Ro ...
- 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...
- 论文解读(AGC)《Attributed Graph Clustering via Adaptive Graph Convolution》
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qi ...
- 论文解读(SelfGNN)《Self-supervised Graph Neural Networks without explicit negative sampling》
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. K ...
- 论文解读《Momentum Contrast for Unsupervised Visual Representation Learning》俗称 MoCo
论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoq ...
随机推荐
- Web优化躬行记(6)——优化闭环实践
在遇到一个页面性能问题时,我理解的优化闭环是:分析.策略.验证和沉淀. 分析需要有分析数据,因此得有一个性能监控管理. 策略就是制订针对性的优化方案,解决当前遇到的问题. 验证的对象上述策略,判断方案 ...
- 使用.NET简单实现一个Redis的高性能克隆版(七-完结)
译者注 该原文是Ayende Rahien大佬业余自己在使用C# 和 .NET构建一个简单.高性能兼容Redis协议的数据库的经历. 首先这个"Redis"是非常简单的实现,但是他 ...
- Apache DolphinScheduler 使用文档(4/8):软件部署
本文章经授权转载,原文链接: https://blog.csdn.net/MiaoSO/article/details/104770720 目录 4. 软件部署 4.1 为 dolphinschedu ...
- 我用Axure制作了一款火影小游戏 | PM老猫
Axure不仅仅是一个原型工具,除了原型之外还可以用来制作一些静态网页,这点对于不懂代码或前端的同学来说挺实用.之前整理了一版<Axure函数自查表>,因为感觉内容太多又对前端样式及脚本感 ...
- CF1368G Shifting Dominoes (线段树)
题面 有一个 n × m n\times m n×m 的棋盘,被 1 × 2 1\times 2 1×2 的骨牌覆盖,保证 2 ∣ n × m 2|n\times m 2∣n×m. 现在你需要执行以下 ...
- C#基础_类的声明
新建Clerk类. using System; using System.Collections.Generic; using System.Linq; using System.Text; usin ...
- CobaltStrike插件编写(1)-权限维持
自嘲:今天打开博客园一看,好家伙我竟然还有账户,原来我注册了博客园啊. CobaltStrike插件-权限维持模块 方法都是网上常见的,正好在学怎么写插件,练手之作,大佬勿喷. popup beaco ...
- 第九十七篇:CSS的选择器及优先级
好家伙,来补一点关于CSS的基础 1.id选择器 id 选择器可以为标有特定 id 的 HTML 元素指定特定的样式 使用#号来定义样式 2.class选择器 class 选择器用于描述一组元素的样式 ...
- 记一次 .NET 某数控机床控制程序 卡死分析
一:背景 1. 讲故事 前段时间有位朋友微信上找到我,说它的程序出现了卡死,让我帮忙看下是怎么回事? 说来也奇怪,那段时间求助卡死类的dump特别多,被迫训练了一下对这类问题的洞察力 ,再次声明一下, ...
- 《Java编程思想》读书笔记(五)
前言:本文是<Java编程思想>读书笔记系列的最后一章,本章的内容很多,需要细读慢慢去理解,文中的示例最好在自己电脑上多运行几次,相关示例完整代码放在码云上了,码云地址:https://g ...