\(\text{Solution}\)

明显的 \(\text{K-D Tree}\) 基操题

提前给出了数列,那么考虑提前建好树,省去重构

但还是要开 \(O\)

\(\text{Code}\)

#pragma GCC optimize(3)
#pragma GCC optimize("inline")
#pragma GCC optimize("Ofast")
#pragma GCC target("sse3","sse2","sse")
#pragma GCC diagnostic error "-std=c++14"
#pragma GCC diagnostic error "-fwhole-program"
#pragma GCC diagnostic error "-fcse-skip-blocks"
#pragma GCC diagnostic error "-funsafe-loop-optimizations"
#pragma GCC optimize("fast-math","unroll-loops","no-stack-protector","inline")
#include <cstdio>
#include <iostream>
#include <algorithm>
#define LL long long
#define re register
using namespace std; const int N = 5e4 + 5;
const LL P = 536870912;
int n, m, cur, x0, y0, x1, y1, rt, L1[N], L2[N], R1[N], R2[N], siz[N], ls[N], rs[N], ds[N], gs[N];
LL sum[N], tg1[N], tg2[N], v1, v2;
struct node{int x, y; LL v;}s[N];
inline bool cmpx(int a, int b){return s[a].x < s[b].x;}
inline bool cmpy(int a, int b){return s[a].y < s[b].y;} inline void read(int &x)
{
x = 0; char ch = getchar();
while (!isdigit(ch)) ch = getchar();
while (isdigit(ch)) x = (x << 3) + (x << 1) + (ch ^ 48), ch = getchar();
} inline void update(int p, int o)
{
L1[p] = min(L1[p], L1[o]), R1[p] = max(R1[p], R1[o]);
L2[p] = min(L2[p], L2[o]), R2[p] = max(R2[p], R2[o]);
}
inline void maintain(int p)
{
siz[p] = siz[ls[p]] + siz[rs[p]] + 1, sum[p] = sum[ls[p]] + sum[rs[p]] + s[p].v;
L1[p] = R1[p] = s[p].x, L2[p] = R2[p] = s[p].y;
if (ls[p]) update(p, ls[p]); if (rs[p]) update(p, rs[p]);
} int build(int l, int r)
{
if (l > r) return 0;
int mid = (l + r) >> 1;
double av1 = 0, av2 = 0, s1 = 0, s2 = 0;
for(re int i = l; i <= r; i++) av1 += s[gs[i]].x, av2 += s[gs[i]].y;
av1 /= (r - l + 1), av2 /= (r - l + 1);
for(re int i = l; i <= r; i++)
s1 += (av1 - s[gs[i]].x) * (av1 - s[gs[i]].x), s2 += (av2 - s[gs[i]].y) * (av2 - s[gs[i]].y);
if (s1 > s2) nth_element(gs + l, gs + mid, gs + r + 1, cmpx), ds[gs[mid]] = 1;
else nth_element(gs + l, gs + mid, gs + r + 1, cmpy), ds[gs[mid]] = 2;
ls[gs[mid]] = build(l, mid - 1), rs[gs[mid]] = build(mid + 1, r), maintain(gs[mid]);
return gs[mid];
} inline void add1(int p, LL v)
{
s[p].v = s[p].v * v % P, sum[p] = sum[p] * v % P, tg1[p] = tg1[p] * v % P, tg2[p] = tg2[p] * v % P;
}
inline void add2(int p, LL v)
{
s[p].v = (s[p].v + v) % P, sum[p] = (sum[p] + v * siz[p] % P) % P, tg2[p] = (tg2[p] + v) % P;
}
inline void pushdown(int p)
{
add1(ls[p], tg1[p]), add1(rs[p], tg1[p]), tg1[p] = 1;
if (tg2[p]) add2(ls[p], tg2[p]), add2(rs[p], tg2[p]), tg2[p] = 0;
} void modify(int p)
{
if (!p || L1[p] > x1 || R1[p] < x0 || L2[p] > y1 || R2[p] < y0) return;
if (x0 <= L1[p] && R1[p] <= x1 && y0 <= L2[p] && R2[p] <= y1) return add1(p, v1), add2(p, v2);
if (s[p].x >= x0 && s[p].x <= x1 && s[p].y >= y0 && s[p].y <= y1)
sum[p] = (sum[p] - s[p].v + P) % P, s[p].v = (s[p].v * v1 % P + v2) % P, sum[p] = (sum[p] + s[p].v) % P;
pushdown(p), modify(ls[p]), modify(rs[p]), maintain(p);
} LL query(int p)
{
if (!p || L1[p] > x1 || R1[p] < x0 || L2[p] > y1 || R2[p] < y0) return 0;
if (x0 <= L1[p] && R1[p] <= x1 && y0 <= L2[p] && R2[p] <= y1) return sum[p];
pushdown(p);
LL res = 0;
if (s[p].x >= x0 && s[p].x <= x1 && s[p].y >= y0 && s[p].y <= y1) res = s[p].v;
return (res + query(ls[p]) + query(rs[p])) % P;
} int main()
{
freopen("sequence.in", "r", stdin), freopen("sequence.out", "w", stdout);
read(n), read(m);
for(re int i = 1; i <= n; i++) ++cur, read(s[cur].y), s[cur].x = i, gs[++gs[0]] = i, tg1[i] = 1;
rt = build(1, n);
for(int opt; m; m--)
{
read(opt);
if (opt == 0) read(x0), read(x1), read(y0), read(y1), v1 = y0, v2 = y1, y0 = 1, y1 = n, modify(rt);
else if (opt == 1) read(y0), read(y1), read(x0), read(x1), v1 = x0, v2 = x1, x0 = 1, x1 = n, modify(rt);
else if (opt == 2) read(x0), read(x1), y0 = 1, y1 = n, printf("%lld\n", query(rt));
else if (opt == 3) read(y0), read(y1), x0 = 1, x1 = n, printf("%lld\n", query(rt));
}
}

JZOJ 3469. 【NOIP2013模拟联考7】数列(sequence)的更多相关文章

  1. JZOJ【NOIP2013模拟联考14】隐藏指令

    JZOJ[NOIP2013模拟联考14]隐藏指令 题目 Description 在d维欧几里得空间中,指令是一个长度为2N的串.串的每一个元素为d个正交基的方向及反方向之一.例如,d = 1时(数轴) ...

  2. JZOJ 3462. 【NOIP2013模拟联考5】休息(rest)

    3462. [NOIP2013模拟联考5]休息(rest) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

  3. JZOJ 3461. 【NOIP2013模拟联考5】小麦亩产一千八(kela)

    3461. [NOIP2013模拟联考5]小麦亩产一千八(kela) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Det ...

  4. JZOJ 3493. 【NOIP2013模拟联考13】三角形

    3493. [NOIP2013模拟联考13]三角形(triangle) (File IO): input:triangle.in output:triangle.out Time Limits: 10 ...

  5. JZOJ 3487. 【NOIP2013模拟联考11】剑与魔法(dragons)

    3487. [NOIP2013模拟联考11]剑与魔法(dragons) (Standard IO) Time Limits: 1000 ms  Memory Limits: 131072 KB  De ...

  6. JZOJ 3470. 【NOIP2013模拟联考8】最短路(path)

    470. [NOIP2013模拟联考8]最短路(path) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

  7. JZOJ 3463. 【NOIP2013模拟联考5】军训

    3463. [NOIP2013模拟联考5]军训(training) (Standard IO) Time Limits: 2000 ms  Memory Limits: 262144 KB  Deta ...

  8. 【NOIP2013模拟联考7】OSU

    [NOIP2013模拟联考7]OSU 描述 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分, ...

  9. [jzoj]3468.【NOIP2013模拟联考7】OSU!(osu)

    Link https://jzoj.net/senior/#main/show/3468 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: ...

  10. [jzoj]3456.【NOIP2013模拟联考3】恭介的法则(rule)

    Link https://jzoj.net/senior/#main/show/3456 Description 终于,在众亲们的奋斗下,最终boss 恭介被关进了库特设计的密室.正当她们松了一口气时 ...

随机推荐

  1. python调用程序路径中包空格,及包含特殊字符问题

    解决办法 import os s = r'"C:\Program Files\Google\Chrome\Application\chrome.exe"' print(s) os. ...

  2. docker部署项目

    @ 目录 前言 一.下载安装docker: 1.前提工作 1.1 查看linux版本 1.2 yum包更新到最新 1.3 安装工具包 1.4 设置yum源并更新yum包索引 2.安装docker 2. ...

  3. 图解B树及C#实现(1)

    目录 前言 索引原理 局部性(Locality) 数据的局部性 内存存储和磁盘存储 磁盘存储适合的索引结构 B树简介 定义 B树中数据的有序性 用C#定义数据结构 插入数据的过程 分裂:新节点诞生的唯 ...

  4. 《HTTP权威指南》– 2.HTTP报文与URL资源

    URL与资源: 大多数URL方案的URL语法都建立在这个由9部分构成的通用格式上. 方案: 访问服务器以获取资源要使用哪种协议 用户: 某些方案访问资源时需要的用户名 密码: 用户名后面可能包含的密码 ...

  5. APP兼容测试点与WEB兼容测试点

    APP兼容测试点 WEB兼容测试点

  6. 基于K-means聚类算法进行客户人群分析

    摘要:在本案例中,我们使用人工智能技术的聚类算法去分析超市购物中心客户的一些基本数据,把客户分成不同的群体,供营销团队参考并相应地制定营销策略. 本文分享自华为云社区<基于K-means聚类算法 ...

  7. Kafka相关面试题及答案

    Kafka相关面试题及答案 1. Kafka中的ISR.AR又代表什么? ISR:与leader保持同步的follower集合 AR:分区的所有副本 2. Kafka中的HW.LEO等分别代表什么? ...

  8. Input源码解读——从"Show tabs"开始

    Input源码解读--从"Show tabs"开始 本文基于Android T版本源码,梳理当用户在开发者选项中开启Show tabs功能后显示第点按操作的视觉反馈的原理,来进一步 ...

  9. python进阶之路15 之异常处理、生成器相关

    异常捕获处理 1.异常 异常就是代码运行报错 行业术语叫bug 代码运行中一旦遇到异常会直接结束整个程序的运行 我们在编写代码的过程中要尽可能避免 2.异常分类 语法错误 不允许出现 一旦出现立刻改正 ...

  10. 在 K8S Volume 中使用 subPath

    使用 subPath 有时,在单个 Pod 中共享卷以供多方使用是很有用的. volumeMounts.subPath 属性可用于指定所引用的卷内的子路径,而不是其根路径. 下面是一个使用同一共享卷的 ...