吴恩达老师机器学习课程chapter03——过拟合与正则化
吴恩达老师机器学习课程chapter03——过拟合与正则化
本文是非计算机专业新手的自学笔记,欢迎指正与其他任何合理交流。
本文仅作速查备忘之用,对应吴恩达(AndrewNg)老师的机器学期课程第七章。
基本概念

特征选取过多,hθ(x)会对训练集学习得过好,以至于对新的样本的判断结果很差。
解决方法有二:
- 减少特征数目
- 手动选择
- 模型选择算法
- 正则化
- 减少某些特征的参数θ,即降低其权重。
正则化
线性回归中的正则化

修改代价函数:
+\lambda \sum_{}^{} \theta_{j}^{2}\right]
\]
于是,进行梯度下降法时候,对于需要参与正则化的θj,其迭代也要做相对的修改,改为:
\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}+
\frac{\lambda}{m} \theta_{j}\right]
\]
进行正规方程法时候,需要作出修改如下:
\]
其中diag表示对角矩阵,若第j个参数不参与正则化,则aj=0;否则,aj=1。
分类中的正则化
与线性中的同理:

吴恩达老师机器学习课程chapter03——过拟合与正则化的更多相关文章
- 机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 http://www.ai-start.com/
机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 GNU Octave 开源 MatLab http://www.ai-start.com/ https://zhuanlan.zhihu ...
- 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程
上一篇 ※※※※※※※※ [回到目录] ※※※※※※※※ 下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...
- 吴恩达《机器学习》课程总结(5)_logistic回归
Q1分类问题 回归问题的输出可能是很大的数,而在分类问题中,比如二分类,希望输出的值是0或1,如何将回归输出的值转换成分类的输出0,1成为关键.注意logistics回归又称 逻辑回归,但他是分类问题 ...
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
- 吴恩达《机器学习》课程笔记——第七章:Logistic回归
上一篇 ※※※※※※※※ [回到目录] ※※※※※※※※ 下一篇 7.1 分类问题 本节内容:什么是分类 之前的章节介绍的都是回归问题,接下来是分类问题.所谓的分类问题是指输出变量为有限个离散 ...
- 吴恩达《机器学习》课程总结(18)_照片OCR
18.1问题描述和流程图 (1)图像文字识别是从给定的一张图片中识别文字. (2)流程包括: 1.文字侦测 2.字符切分(现在不需要切分了) 3.字符分类 18.2滑动窗口 在行人检测中,滑动窗口是首 ...
- 吴恩达《机器学习》编程作业——machine-learning-ex1:线性回归
❄❄❄❄❄❄❄❄[回到目录]❄❄❄❄❄❄❄❄ 本次编程作业中,需要完成的代码有如下几部分: [⋆] warmUpExercise.m - Simple example function in Octa ...
- 跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)
1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_ ...
- 跟我学算法-吴恩达老师(mini-batchsize,指数加权平均,Momentum 梯度下降法,RMS prop, Adam 优化算法, Learning rate decay)
1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间 当 ...
- 跟我学算法-吴恩达老师的logsitic回归
logistics回归是一种二分类问题,采用的激活函数是sigmoid函数,使得输出值转换为(0,1)之间的概率 A = sigmoid(np.dot(w.T, X) + b ) 表示预测函数 dz ...
随机推荐
- Django基础(1)
一.开发模式 MVC模式: model:数据库 view:前端展示 controller:逻辑控制 MTV模式(Django): model:数据库 view:逻辑控制 template:前端展示(模 ...
- C++中链表报错member access within null pointer of type 'ListNode'
报错原因:指针有指向空节点的可能,所以报错,C++中链表的使用比较严格 解决方法:在给指针确定指向节点之前,先判断此节点是否为空节点
- 七、25.创建user子分支并把代码推送到码云仓库中
打开终端点击+新建一个终端 注意 :如下操作都是在2:powershell下进行 先来检查一下当前所处分支 git branch 我们应该把这些代码都写到user分支上 接下来应该把这些代码统一迁移到 ...
- Java面向对像之方法重写
方法重写Override 重写:需要有继承关系,子类重写父类的方法! 特点: 1.方法名必须相同 2.参数列表必须相同 3.修饰符:范围可以扩大:public > Protected > ...
- 分析网络工具 Wireshark与tcpdump
一.安装使用 1. 安装 2. 选择网卡:我们的主机就是通过其中一块网卡和其他主机进行数据交互: 3. 点击开始:打开wireshark,点击左上角那个蓝色的鲨鱼鳍按钮,开始捕获新的分组并清空之前的分 ...
- 函数记录CAM
UF_PARAM_generate 生成刀轨 UF_PARAM_duplicate 此函数创建与"old_obj_tag"类型相同的新对象.它使用'old_obj_tag'数据初 ...
- java中Atomic变量的实现原理是怎样的?
转载自: Java3y https://www.zhihu.com/question/39130725/answer/1006948362 一.基础铺垫 首先我们来个例子: public class ...
- PY3多继承
__author__ = "Alex Li"class A: def __init__(self): print("A")class B(A): pass #d ...
- 第八章用matplotlib、seaborn、pyecharts绘制散点图
文章目录 散点图 matplotlib绘制散点图 seaborn绘制散点图 pyecharts绘制散点图 源码地址 本文可以学习到以下内容: matplotlib 中文乱码解决办法 seaborn 中 ...
- hdu 4283You Are the One
The TV shows such as You Are the One has been very popular. In order to meet the need of boys who ar ...