Luogu3803 【模板】多项式乘法(FFT)

为什么我这么弱
其实FFT也挺水的,一点数学基础加上细心即可。细节·技巧挺多。
递归
在TLE的边缘苦苦挣扎
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
//#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 4000007; // how much should I open QAQ ?
const double pi = acos(-1.0);
struct Complex{
double x, y;
Complex (double xx = 0, double yy = 0) {x = xx, y = yy;}
Complex operator + (Complex b){ return Complex(x + b.x, y + b.y); }
Complex operator - (Complex b){ return Complex(x - b.x, y - b.y); }
Complex operator * (Complex b){ return Complex(x * b.x - y * b.y, x * b.y + y * b.x); }
}a[N], b[N];
inline void FFT(int limit, Complex *a, int opt){
if(limit == 1) return;
Complex a1[(limit >> 1) + 3], a2[(limit >> 1) + 3];
for(register int i = 0; i <= limit; i += 2){
a1[i >> 1] = a[i];
a2[i >> 1] = a[i + 1];
}
FFT(limit >> 1, a1, opt);
FFT(limit >> 1, a2, opt);
Complex Wn = Complex( cos(2.0 * pi / limit), opt * sin(2.0 * pi / limit));
Complex w = Complex( 1, 0);
R(i,0,(limit >> 1) - 1){ // be careful, do not write 'R(i,0,(limit >> 1))'
a[i] = a1[i] + w * a2[i];
a[i + (limit >> 1)] = a1[i] - w * a2[i];
w = w * Wn;
}
}
int main(){
int n, m;
io >> n >> m;
R(i,0,n) io >> a[i].x;
R(i,0,m) io >> b[i].x;
int limit;
for(limit = 1; limit <= n + m; limit <<= 1);
FFT(limit, a, 1);
FFT(limit, b, 1); // coefficient changes to point value
R(i,0,limit){
a[i] = a[i] * b[i];
}
FFT(limit, a, -1); // point value changes to coefficient
R(i,0,n + m){
printf("%d ", (int)(a[i].x / limit + 0.5)); // ans should divide limit
}
return 0;
}
迭代
快得飞起\ *^* /
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
//#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 4000007; // how much should I open QAQ ? // Oh, I undersand ! It's influenced by 'limit'
const double pi = acos(-1.0);
struct Complex{
double x, y;
Complex (double xx = 0, double yy = 0) {x = xx, y = yy;}
Complex operator + (Complex b){ return Complex(x + b.x, y + b.y); }
Complex operator - (Complex b){ return Complex(x - b.x, y - b.y); }
Complex operator * (Complex b){ return Complex(x * b.x - y * b.y, x * b.y + y * b.x); }
}a[N], b[N];
int r[N];
inline void FFT(int limit, Complex *a, int opt){
R(i,0,limit - 1)
if(i < r[i])
swap(a[i], a[r[i]]);
for(register int mid = 1; mid < limit; mid <<= 1){
Complex Wn( cos(pi / mid), opt * sin(pi / mid));
int len = mid << 1;
for(register int j = 0; j < limit; j += len){
Complex w( 1, 0);
R(k,0,mid - 1){
Complex x = a[j + k], y = w * a[j + mid + k];
a[j + k] = x + y;
a[j + mid + k] = x - y;
w = w * Wn;
}
}
}
}
int main(){
FileOpen();
int n, m;
io >> n >> m;
R(i,0,n) io >> a[i].x;
R(i,0,m) io >> b[i].x;
int limit = 1, len = 0;
while(limit <= n + m){
limit <<= 1;
++len;
}
R(i,0,limit - 1){
r[i] = (r[i >> 1] >> 1) | ((i & 1) << (len - 1));
}
FFT(limit, a, 1);
FFT(limit, b, 1); // coefficient changes to point value
R(i,0,limit){
a[i] = a[i] * b[i];
}
FFT(limit, a, -1); // point value changes to coefficient
R(i,0,n + m){
printf("%d ", (int)(a[i].x / limit + 0.5)); // ans should divide limit
}
return 0;
}

Luogu3803 【模板】多项式乘法(FFT)的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 【Luogu3803】多项式乘法FFT(FFT)
题目戳我 一道模板题 自己尝试证明了大部分... 剩下的还是没太证出来... 所以就是一个模板放在这里 以后再来补东西吧.... #include<iostream> #include&l ...
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- 多项式乘法(FFT)学习笔记
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法 ...
- @总结 - 1@ 多项式乘法 —— FFT
目录 @0 - 参考资料@ @1 - 一些概念@ @2 - 傅里叶正变换@ @3 - 傅里叶逆变换@ @4 - 迭代实现 FFT@ @5 - 参考代码实现@ @6 - 快速数论变换 NTT@ @7 - ...
- 【learning】多项式乘法&fft
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...
- [uoj#34] [洛谷P3803] 多项式乘法(FFT)
新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂
多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...
- 【模板】多项式乘法(FFT)
题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系 ...
随机推荐
- RabitMQ 简介
每日一句 The secret of being miserable is to have leisure to bother about whether you are happy or not. ...
- 【Azure 存储服务】Java Azure Storage SDK V12使用Endpoint连接Blob Service遇见 The Azure Storage endpoint url is malformed
问题描述 使用Azure Storage Account的共享访问签名(Share Access Signature) 生成的终结点,连接时遇见 The Azure Storage endpoint ...
- docker 快速上手
Docker 属于 Linux 容器的一种封装,提供简单易用的容器使用接口 安装 docker 设置仓库 $ sudo yum install -y yum-utils $ sudo yum-conf ...
- 使用docker搭建jupyter notebook / jupyterlab
说明 由于官方镜像实在是不怎么好用,所以我自己做了一个优化过的jupyter notebook的镜像 notebook_hub,使用我这个镜像搭建容器非常简单,下面就基于这个notebook_hub来 ...
- split(),strip,split("/")[-1] 和 split("/",-1)的区别
Python中split()函数,通常用于将字符串切片并转换为列表. 一.函数说明: split():语法: str.split(str="",num=string.count(s ...
- JUnit 5 - Nested Test 内嵌测试
本文地址:https://www.cnblogs.com/hchengmx/p/15158658.html 1. Nested用来解决什么问题 简单地说,Nested用来解决,随着Case越来越多,C ...
- el-select数据量过大引发卡顿,怎么办?
本文分享自华为云社区<解决el-select数据量过大的卡顿的两种思路与一种实施方案>,作者: KevinQ. 经典问题:在测试环境好好的,怎么到正式环境就不行了? --本文:数据量变了. ...
- java8 Stream新特性
import lombok.Getter; import lombok.Setter; @Setter @Getter public class Person { private String nam ...
- 10.Linux防火墙iptables之SNAT与DNAT
Linux防火墙iptables之SNAT与DNAT 目录 Linux防火墙iptables之SNAT与DNAT SNAT策略及应用 SNAT策略概述 SNAT策略典型应用环境 SNAT策略原理 SN ...
- bat-注册表
注册表 注册表就像于是配置文件 linux下一切皆文件,windows下一切皆注册表 注册表(各种配置文件:系统设置.用户设置.软件的配置) HKEY_CLASSES_ROOT 超级管理员.系 ...