支持向量机SVM(Support Vector Machine)是一种用来进行模式识别、分类、回归的机器学习模型。

SVM原理描述

模型表示

以一个客户好坏分类为案例,客户信息如下所示:

客户信息数轴表示如下所示:

以数学表达式对上述信息进行描述,可以用下式进行表示:

然而该方法对于大型数据集容易发生拟合,且过于复杂。

因此可以忽略一些点,进行一刀切,如下所示:

但是该方法容易导致错分率高。因此SVM就是找一种方式正确的描述分类方程。

超平面

因此该超平面的公式可以用下式进行表示:

\[g(v)=wv+b
\]

其中v是样本向量,在二维空间v=(x,y),在三维空间v=(x,y,z)。w是参数向量,在二维空间w=(A,B),在三维空间w=(A,B,C)。

因此上述距离公式可以表示为:

\[d(v)=|g(v)|/\left \| w \right \|
\]

超平面确定

SVM目标是找到一个超平面,使得其在两个类中间分开。并使得该超平面到两边的距离最大,如下图所示:

但是如果对于线性不可分的情况,如下图所示:

此时上述方式无法确定超平面。在SVM在则是通过升维的方式解决。例如:

因此SVM在一维空间上解决线性不可分割的问题是把函数映射到二维空间。同样在n维空间的线性不可分割问题映射到n+1维空间。而这种映射分类函数,在svm用核函数(kernel)进行构造。

因此支持向量机具体算法步骤为:

  1. 把所有的样本和其标记交给算法进行训练
  2. 如果线性可分则直接找出超平面
  3. 如果线性不可分,进行映射找出超平面
  4. 得到超平面表达式,进行分类回归

sklearn实现

在sklearn支持向量机主要用SVC类支持。SVC所支持的和函数有linear(线性和函数)、rbf(径向基核函数)、sigmoid(神经元激活函数)等,通常推荐使用rbf函数。以客户评价为例代码如下:

from sklearn import svm
import numpy as np
#年龄
X = np.array([[34, 33, 32, 31, 30, 30, 25, 23, 22, 18]])
X = X.T
#质量
y = [1, 0, 1, 0, 1, 1, 0, 1, 0, 1] clf = svm.SVC(kernel='rbf').fit(X, y) p = [[30]]
print(clf.predict(p)) #1

函数其他参数改动可参考官网文档:svm

[机器学习] sklearn支持向量机的更多相关文章

  1. 机器学习之支持向量机(四):支持向量机的Python语言实现

    注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...

  2. 机器学习之支持向量机(三):核函数和KKT条件的理解

    注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...

  3. 机器学习之支持向量机(二):SMO算法

    注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...

  4. python机器学习-sklearn挖掘乳腺癌细胞(五)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  5. python机器学习-sklearn挖掘乳腺癌细胞(四)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  6. python机器学习-sklearn挖掘乳腺癌细胞(三)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  7. python机器学习-sklearn挖掘乳腺癌细胞(二)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  8. python机器学习-sklearn挖掘乳腺癌细胞(一)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  9. 机器学习之支持向量机原理和sklearn实践

    1. 场景描述 问题:如何对对下图的线性可分数据集和线性不可分数据集进行分类? 思路: (1)对线性可分数据集找到最优分割超平面 (2)将线性不可分数据集通过某种方法转换为线性可分数据集 下面将带着这 ...

随机推荐

  1. Docker | 部署nginx服务

    容器时相互隔离的,docker启动的nginx是容器内的服务,不影响我原先服务器上的nginx服务,小伙伴们可大胆尝试 本篇实在linux环境下操作的,主要目的是夺人眼目,对使用Docker部署服务尝 ...

  2. 项目管理构建工具——Maven(高阶篇)

    项目管理构建工具--Maven(高阶篇) 我们在之前的文章中已经基本了解了Maven,但也仅仅只止步于了解 Maven作为我们项目管理构建的常用工具,具备许多功能,在这篇文章中我们来仔细介绍 分模块开 ...

  3. Charles的安装与使用

    Charles是一款抓包工具,可以用来截取和发送手机APP上的各种请求 在windows上安装Charles,确保手机和电脑在同一个WIFI下,加上一些配置,就可以抓取手机上的APP请求 有能力的同学 ...

  4. 从0开始写一个简单的vite hmr 插件

    从0开始写一个简单的vite hmr 插件 0. 写在前面 在构建前端项目的时候,除开基本的资源格式(图片,json)以外,还常常会需要导入一些其他格式的资源,这些资源如果没有第三方vite插件的支持 ...

  5. 2022-08-25-cdn套中套

    layout: post cid: 19 title: cdn套中套 slug: 19 date: 2022/08/25 20:32:00 updated: 2022/08/26 11:20:20 s ...

  6. nordic——nrf52系列SWD设置回读保护

    在开发时可能需要回读保护功能,在产品出厂后这个功能可以让你的代码更加安全,无法用SEGGER或者其余方式读取你的代码HEX文件,也就是禁用SWD下载接口.但是SWD锁住了,还想使用(从新下载代码)也是 ...

  7. 基于PCIe的多路视频采集与显示子系统

    基于PCIe的多路视频采集与显示子系统 1        概述 视频采集与显示子系统可以实时采集多路视频信号,并存储到视频采集队列中,借助高效的硬实时视频帧出入队列管理和PCIe C2H DMA引擎, ...

  8. 如何在JavaScript中使用for循环

    前言 循环允许我们通过循环数组或对象中的项并做一些事情,比如说打印它们,修改它们,或执行其他类型的任务或动作.JavaScript有各种各样的循环,for循环允许我们对一个集合(如数组)进行迭代. 在 ...

  9. ANSYS安装教程

    ANSYS 16.0 WIN10 64位安装步骤:1.使用"百度网盘客户端"下载ANSYS 16.0软件安装包到电脑磁盘里全英文名称文件夹内,安装前先断开网络,然后找到ANSYS. ...

  10. Go语言书籍推荐

    附录: 其他书籍的介绍:https://github.com/golang/go/wiki/Books Go程序设计语言 (圣经) 作者 艾伦 A.A.多诺万 Kernighan 下载地址 中文版PD ...