Nvidia GPU池化-远程GPU
1 背景
2 远程GPU
- User APP:业务层,如训练或推理任务等
- Framework:框架层,如tensorflow、pytorch、paddle、megengine等
- CUDA Runtime:CUDA Runtime及周边生态库,如cudart、cublas、cudnn、cufft、cusparse等
- CUDA User Driver:用户态CUDA Driver,如cuda、nvml等
- CUDA Kernel Driver:内核态CUDA Driver,参考官方开源代码,如nvidia.ko等
- Nvidia GPU HW:GPU硬件

2.1 Fungible


2.2 rCUDA
2.3 Bitfusion

- Bitfusion Server:把GPU安装在vSphere服务器上(要求vSphere 7以上版本),然后在上面运行Bitfusion Server,Bitfusion Server可以把物理GPU资源虚拟化,共享给多个用户使用。
- Bitfusion Client:Bitfusion Client是运行在其他vSphere服务器上的Linux虚机(要求 vSphere 6.7 以上版本),机器学习工作负载运行在这些虚拟机上,Bitfusion会把它们对于GPU的服务请求通过网络传输给Bitfusion Server,计算完成后再返回结果。对于机器学习工作负载来说,远程GPU是完全透明的,它就像是在使用本地的GPU硬件。

2.4 OrionX
- Orion Controller:负责整个GPU资源池的资源管理。其响应Orion Client的vGPU请求,并从GPU资源池中为Orion Client端的CUDA应用程序分配并返回Orion vGPU资源。
- Orion Server:负责GPU资源化的后端服务程序,部署在每一个CPU以及GPU节点上,接管本机内的所有物理GPU。当Orion Client端应用程序运行时,通过Orion Controller的资源调度,建立和Orion Server的连接。Orion Server为其应用程序的所有CUDA调用提供一个隔离的运行环境以及真实GPU硬件算力。
- Orion Client:模拟了NVidia CUDA的运行库环境,为CUDA程序提供了API接口兼容的全新实现。通过和Orion其他功能组件的配合,为CUDA应用程序虚拟化了一定数量的虚拟GPU(Orion vGPU)。使用CUDA动态链接库的CUDA应用程序可以通过操作系统环境设置,使得一个CUDA应用程序在运行时由操作系统负责链接到Orion Client提供的动态链接库上。由于Orion Client模拟了NVidia CUDA运行环境,因此CUDA应用程序可以透明无修改地直接运行在Orion vGPU之上。

3 其他
3.1 技术难点
3.2 GPU热迁移
Nvidia GPU池化-远程GPU的更多相关文章
- 【转载】 NVIDIA Tesla/Quadro和GeForce GPU比较
原文地址: https://blog.csdn.net/m0_37462765/article/details/74394932 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议 ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- tensorflow的卷积和池化层(二):记实践之cifar10
在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tenso ...
- MinkowskiPooling池化(下)
MinkowskiPooling池化(下) MinkowskiPoolingTranspose class MinkowskiEngine.MinkowskiPoolingTranspose(kern ...
- MinkowskiPooling池化(上)
MinkowskiPooling池化(上) 如果内核大小等于跨步大小(例如kernel_size = [2,1],跨步= [2,1]),则引擎将更快地生成与池化函数相对应的输入输出映射. 如果使用U网 ...
- cuSPARSELt开发NVIDIA Ampere结构化稀疏性
cuSPARSELt开发NVIDIA Ampere结构化稀疏性 深度神经网络在各种领域(例如计算机视觉,语音识别和自然语言处理)中均具有出色的性能.处理这些神经网络所需的计算能力正在迅速提高,因此有效 ...
- DL基础补全计划(六)---卷积和池化
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- 高可用的池化 Thrift Client 实现(源码分享)
本文将分享一个高可用的池化 Thrift Client 及其源码实现,欢迎阅读源码(Github)并使用,同时欢迎提出宝贵的意见和建议,本人将持续完善. 本文的主要目标读者是对 Thrift 有一定了 ...
- 【GPU编解码】GPU硬编码 (转)
一.OpenCV中的硬编码 OpenCV2.4.6中,已实现利用GPU进行写视频,编码过程由cv::gpu::VideoWriter_GPU完成,其示例程序如下. 1 int main(int arg ...
- 测试EntityFramework,Z.EntityFramework.Extensions,原生语句在不同的查询中的表现。原来池化与非池化设定是有巨大的影响的。
Insert测试,只测试1000条的情况,多了在实际的项目中应该就要另行处理了. using System; using System.Collections.Generic; using Syste ...
随机推荐
- css cursor: url() 使用火狐浏览器问题,鼠标没有效果
在火狐浏览器问题使用cursor: url():鼠标没有效果,需要给使用标签添加一个height
- DEM高程数据下载资源
最近发现了几个比较好的DEM高程数据免费下载资源,遂总结一下. clouldRF(https://cloudrf.com/terrain%20data)官方网站有说明其支持的地形数据来源,主要包括如下 ...
- SSD目标检测网络解读(含网络结构和内容解读)
SSD实现思路 SSD具有如下主要特点: 从YOLO中继承了将detection转化为regression的思路,一次完成目标定位与分类 基于Faster RCNN中的Anchor,提出了相似的Pri ...
- github使用流程
前期硬件准备工作(电脑相关配置): 1.下载git软件,傻瓜式安装 https://git-scm.com/download/win 2.设置你的用户名称与邮件地址 git config --glob ...
- 基于百度智能云api下的车牌识别系统
车牌识别在高速公路中有着广泛的应用,比如我们常见的电子收费(ETC)系统和交通违章车辆的检测,除此之外像小区或地下车库门禁也会用到,基本上凡是需要对车辆进行身份检测的地方都会用到. 简介 车牌识别系统 ...
- JavaScript基础学习之一
目录 let和var之间的区别 作用域不同 变量提升 暂时性死区(temporal dead zone,简称 TDZ) 相同作用域下的重复声明 脚本调用 数据类型 Boolean Object 对象 ...
- Linux(CentOS)安装脚本
此文以CentOS为例,乌班图的是有区别的,请参照https://www.cnblogs.com/takako_mu/p/11725733.html. 安装.Net Core (能访问外网的情况下采用 ...
- day48-Mysql安装文件结构及SQL常用语句
1.安装文件结构 bin--mysql.exe 客户端运行程序: mysqld.exe 服务端运行程序: data--数据库.数据表等文件 注:修改配置文件后需要重启服务端 2.常用SQL语句 1) ...
- Navicat 连接MySQL数据库 报错2059
Navicat 连接MySQL数据库 报错2059 - authentication plugin 'caching_sha2_password'的解决办法 2059 - Authentication ...
- Abaqus:单位、高清图片
参考: https://blog.csdn.net/Rayyyy/article/details/113798490 Abaqus高清图片: https://jingyan.baidu.com/art ...