Mxnet速查_CPU和GPU的mnist预测训练_模型导出_模型导入再预测_导出onnx并预测
需要做点什么
方便广大烟酒生研究生、人工智障炼丹师算法工程师快速使用mxnet,所以特写此文章,默认使用者已有基本的深度学习概念、数据集概念。
系统环境
python 3.7.4
mxnet 1.9.0
mxnet-cu112 1.9.0
onnx 1.9.0
onnxruntime-gpu 1.9.0
数据准备
MNIST数据集csv文件是一个42000x785的矩阵
42000表示有42000张图片
785中第一列是图片的类别(0,1,2,..,9),第二列到最后一列是图片数据向量 (28x28的图片张成784的向量), 数据集长这个样子:
1 0 0 0 0 0 0 0 0 0 ..
0 0 0 0 0 0 0 0 0 0 ..
1 0 0 0 0 0 0 0 0 0 ..
1. 导入需要的包
import time
import copy
import onnx
import logging
import platform
import mxnet as mx
import numpy as np
import pandas as pd
import onnxruntime as ort
from sklearn.metrics import accuracy_score
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
# Mxnet Chcek
if platform.system().lower() != 'windows':
print(mx.runtime.feature_list())
print(mx.context.num_gpus())
a = mx.nd.ones((2, 3), mx.cpu())
b = a * 2 + 1
print(b)
运行输出
[ CUDA, CUDNN, NCCL, CUDA_RTC, TENSORRT, CPU_SSE, CPU_SSE2, CPU_SSE3, CPU_SSE4_1, CPU_SSE4_2, CPU_SSE4A, CPU_AVX, CPU_AVX2, OPENMP, SSE, F16C, JEMALLOC, BLAS_OPEN, BLAS_ATLAS, BLAS_MKL, BLAS_APPLE, LAPACK, MKLDNN, OPENCV, CAFFE, PROFILER, DIST_KVSTORE, CXX14, INT64_TENSOR_SIZE, SIGNAL_HANDLER, DEBUG, TVM_OP]
1
[[3. 3. 3.]
[3. 3. 3.]]
<NDArray 2x3 @cpu(0)>
2. 参数准备
N_EPOCH = 1
N_BATCH = 32
N_BATCH_NUM = 900
S_DATA_PATH = r"mnist_train.csv"
S_MODEL_PATH = r"mxnet_cnn"
S_SYM_PATH = './mxnet_cnn-symbol.json'
S_PARAMS_PATH = './mxnet_cnn-0001.params'
S_ONNX_MODEL_PATH = './mxnet_cnn.onnx'
S_DEVICE, N_DEVICE_ID, S_DEVICE_FULL = "cuda", 0, "cuda:0"
# S_DEVICE, N_DEVICE_ID, S_DEVICE_FULL = "cpu", 0, "cpu"
CTX = mx.cpu() if S_DEVICE == "cpu" else mx.gpu(N_DEVICE_ID)
B_IS_UNIX = True
3. 读取数据
df = pd.read_csv(S_DATA_PATH, header=None)
print(df.shape)
np_mat = np.array(df)
print(np_mat.shape)
X = np_mat[:, 1:]
Y = np_mat[:, 0]
X = X.astype(np.float32) / 255
X_train = X[:N_BATCH * N_BATCH_NUM]
X_test = X[N_BATCH * N_BATCH_NUM:]
Y_train = Y[:N_BATCH * N_BATCH_NUM]
Y_test = Y[N_BATCH * N_BATCH_NUM:]
X_train = X_train.reshape(X_train.shape[0], 1, 28, 28)
X_test = X_test.reshape(X_test.shape[0], 1, 28, 28)
print(X_train.shape)
print(Y_train.shape)
print(X_test.shape)
print(Y_test.shape)
train_iter = mx.io.NDArrayIter(X_train, Y_train, batch_size=N_BATCH)
test_iter = mx.io.NDArrayIter(X_test, Y_test, batch_size=N_BATCH)
test_iter_2 = copy.copy(test_iter)
运行输出
(37800, 785)
(37800, 785)
(28800, 1, 28, 28)
(28800,)
(9000, 1, 28, 28)
(9000,)
4. 模型构建
net = mx.gluon.nn.HybridSequential()
with net.name_scope():
net.add(mx.gluon.nn.Conv2D(channels=32, kernel_size=3, activation='relu')) # bx28x28 ==>
net.add(mx.gluon.nn.MaxPool2D(pool_size=2, strides=2))
net.add(mx.gluon.nn.Flatten())
net.add(mx.gluon.nn.Dense(128, activation="relu"))
net.add(mx.gluon.nn.Dense(10))
net.hybridize()
print(net)
net.collect_params().initialize(mx.init.Xavier(), ctx=CTX)
softmax_cross_entropy = mx.gluon.loss.SoftmaxCrossEntropyLoss()
trainer = mx.gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': .001})
运行输出
HybridSequential(
(0): Conv2D(None -> 32, kernel_size=(3, 3), stride=(1, 1), Activation(relu))
(1): MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, 0), ceil_mode=False, global_pool=False, pool_type=max, layout=NCHW)
(2): Flatten
(3): Dense(None -> 128, Activation(relu))
(4): Dense(None -> 10, linear)
)
5. 模型训练
for epoch in range(N_EPOCH):
for batch_num, itr in enumerate(train_iter):
data = itr.data[0].as_in_context(CTX)
label = itr.label[0].as_in_context(CTX)
with mx.autograd.record():
output = net(data) # Run the forward pass
loss = softmax_cross_entropy(output, label) # Compute the loss
loss.backward()
trainer.step(data.shape[0])
if batch_num % 50 == 0: # Print loss once in a while
curr_loss = mx.nd.mean(loss) # .asscalar()
pred = mx.nd.argmax(output, axis=1)
np_pred, np_lable = pred.asnumpy(), label.asnumpy()
f_acc = accuracy_score(np_lable, np_pred)
print(f"Epoch: {epoch}; Batch {batch_num}; ACC {f_acc}")
print(f"loss: {curr_loss}")
print()
# print("Epoch: %d; Batch %d; Loss %s; ACC %f" %
# (epoch, batch_num, str(curr_loss), f_acc))
print()
运行输出
Epoch: 0; Batch 0; ACC 0.09375
loss:
[2.2868602]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 50; ACC 0.875
loss:
[0.512461]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 100; ACC 0.90625
loss:
[0.43415746]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 150; ACC 0.84375
loss:
[0.3854709]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 200; ACC 1.0
loss:
[0.04192135]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 250; ACC 0.90625
loss:
[0.21156572]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 300; ACC 0.9375
loss:
[0.15938525]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 350; ACC 1.0
loss:
[0.0379494]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 400; ACC 0.96875
loss:
[0.17104594]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 450; ACC 0.96875
loss:
[0.12192786]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 500; ACC 0.96875
loss:
[0.09210478]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 550; ACC 0.9375
loss:
[0.13728428]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 600; ACC 0.96875
loss:
[0.0762211]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 650; ACC 0.96875
loss:
[0.12162409]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 700; ACC 1.0
loss:
[0.04334489]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 750; ACC 1.0
loss:
[0.06458903]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 800; ACC 0.96875
loss:
[0.07410634]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 850; ACC 0.96875
loss:
[0.14233188]
<NDArray 1 @gpu(0)>
6.模型预测
for batch_num, itr in enumerate(test_iter_2):
data = itr.data[0].as_in_context(CTX)
label = itr.label[0].as_in_context(CTX)
output = net(data) # Run the forward pass
loss = softmax_cross_entropy(output, label) # Compute the loss
if batch_num % 50 == 0: # Print loss once in a while
curr_loss = mx.nd.mean(loss) # .asscalar()
pred = mx.nd.argmax(output, axis=1)
np_pred, np_lable = pred.asnumpy(), label.asnumpy()
f_acc = accuracy_score(np_lable, np_pred)
print(f"Epoch: {epoch}; Batch {batch_num}; ACC {f_acc}")
print(f"loss: {curr_loss}")
print()
运行输出
Epoch: 0; Batch 0; ACC 0.96875
loss:
[0.22968824]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 50; ACC 0.96875
loss:
[0.05668993]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 100; ACC 0.96875
loss:
[0.08171713]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 150; ACC 1.0
loss:
[0.02264522]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 200; ACC 0.96875
loss:
[0.080383]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 250; ACC 1.0
loss:
[0.03774196]
<NDArray 1 @gpu(0)>
7.模型保存
net.export(S_MODEL_PATH, epoch=N_EPOCH) # 保存模型结构和全部参数
8.模型加载和加载模型使用
print("load net and do test")
load_net = mx.gluon.nn.SymbolBlock.imports(S_SYM_PATH, ['data'], S_PARAMS_PATH, ctx=CTX) # 加载模型
print("load ok")
for batch_num, itr in enumerate(test_iter): # Test
data = itr.data[0].as_in_context(CTX)
label = itr.label[0].as_in_context(CTX)
output = load_net(data) # Run the forward pass
loss = softmax_cross_entropy(output, label) # Compute the loss
if batch_num % 50 == 0: # Print loss once in a while
curr_loss = mx.nd.mean(loss) # .asscalar()
pred = mx.nd.argmax(output, axis=1)
np_pred, np_lable = pred.asnumpy(), label.asnumpy()
f_acc = accuracy_score(np_lable, np_pred)
print(f"Epoch: {epoch}; Batch {batch_num}; ACC {f_acc}")
print(f"loss: {curr_loss}")
print()
print("finish")
运行输出
load net and do test
load ok
Epoch: 0; Batch 0; ACC 0.96875
loss:
[0.22968824]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 50; ACC 0.96875
loss:
[0.05668993]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 100; ACC 0.96875
loss:
[0.08171713]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 150; ACC 1.0
loss:
[0.02264522]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 200; ACC 0.96875
loss:
[0.080383]
<NDArray 1 @gpu(0)>
Epoch: 0; Batch 250; ACC 1.0
loss:
[0.03774196]
<NDArray 1 @gpu(0)>
finish
9.导出ONNX
if platform.system().lower() != 'windows':
mx.onnx.export_model(S_SYM_PATH, S_PARAMS_PATH, [(32, 1, 28, 28)], [np.float32], S_ONNX_MODEL_PATH, verbose=True, dynamic=True)
运行输出
INFO:root:Converting json and weight file to sym and params
INFO:root:Converting idx: 0, op: null, name: data
INFO:root:Converting idx: 1, op: null, name: hybridsequential0_conv0_weight
INFO:root:Converting idx: 2, op: null, name: hybridsequential0_conv0_bias
INFO:root:Converting idx: 3, op: Convolution, name: hybridsequential0_conv0_fwd
INFO:root:Converting idx: 4, op: Activation, name: hybridsequential0_conv0_relu_fwd
INFO:root:Converting idx: 5, op: Pooling, name: hybridsequential0_pool0_fwd
INFO:root:Converting idx: 6, op: Flatten, name: hybridsequential0_flatten0_flatten0
INFO:root:Converting idx: 7, op: null, name: hybridsequential0_dense0_weight
INFO:root:Converting idx: 8, op: null, name: hybridsequential0_dense0_bias
INFO:root:Converting idx: 9, op: FullyConnected, name: hybridsequential0_dense0_fwd
INFO:root:Converting idx: 10, op: Activation, name: hybridsequential0_dense0_relu_fwd
INFO:root:Converting idx: 11, op: null, name: hybridsequential0_dense1_weight
INFO:root:Converting idx: 12, op: null, name: hybridsequential0_dense1_bias
INFO:root:Converting idx: 13, op: FullyConnected, name: hybridsequential0_dense1_fwd
INFO:root:Output node is: hybridsequential0_dense1_fwd
INFO:root:Input shape of the model [(32, 1, 28, 28)]
INFO:root:Exported ONNX file ./mxnet_cnn.onnx saved to disk
10. 加载ONNX并运行
if platform.system().lower() != 'windows':
model = onnx.load(S_ONNX_MODEL_PATH)
print(onnx.checker.check_model(model)) # Check that the model is well formed
# print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph
ls_input_name, ls_output_name = [input.name for input in model.graph.input], [output.name for output in model.graph.output]
print("input name ", ls_input_name)
print("output name ", ls_output_name)
s_input_name = ls_input_name[0]
x_input = X_train[:N_BATCH*2, :, :, :].astype(np.float32)
ort_val = ort.OrtValue.ortvalue_from_numpy(x_input, S_DEVICE, N_DEVICE_ID)
print("val device ", ort_val.device_name())
print("val shape ", ort_val.shape())
print("val data type ", ort_val.data_type())
print("is_tensor ", ort_val.is_tensor())
print("array_equal ", np.array_equal(ort_val.numpy(), x_input))
providers = 'CUDAExecutionProvider' if S_DEVICE == "cuda" else 'CPUExecutionProvider'
print("providers ", providers)
ort_session = ort.InferenceSession(S_ONNX_MODEL_PATH, providers=[providers]) # gpu运行
ort_session.set_providers([providers])
outputs = ort_session.run(None, {s_input_name: ort_val})
print("sess env ", ort_session.get_providers())
print(type(outputs))
print(outputs[0])
'''
For example ['CUDAExecutionProvider', 'CPUExecutionProvider']
means execute a node using CUDAExecutionProvider if capable, otherwise execute using CPUExecutionProvider.
'''
运行输出
None
input name ['data', 'hybridsequential0_conv0_weight', 'hybridsequential0_conv0_bias', 'hybridsequential0_dense0_weight', 'hybridsequential0_dense0_bias', 'hybridsequential0_dense1_weight', 'hybridsequential0_dense1_bias']
output name ['hybridsequential0_dense1_fwd']
val device cuda
val shape [64, 1, 28, 28]
val data type tensor(float)
is_tensor True
array_equal True
providers CUDAExecutionProvider
sess env ['CUDAExecutionProvider', 'CPUExecutionProvider']
<class 'list'>
[[-2.69336128e+00 8.42524242e+00 -3.34120363e-01 -1.17912292e+00
3.82278800e-01 -3.60794234e+00 3.58125120e-01 -2.58064723e+00
1.55215383e+00 -2.03553891e+00]
[ 1.02665892e+01 -6.65782404e+00 -2.04501271e-01 -2.25653172e+00
-6.31941366e+00 1.13084137e+00 -3.83885235e-01 8.22283030e-01
-1.21192622e+00 3.33601260e+00]
[-3.27186418e+00 1.00050325e+01 5.39114550e-02 -1.44938648e+00
-9.89762247e-01 -2.09957671e+00 -1.49389958e+00 6.52510405e-01
1.73153889e+00 -1.25597775e+00]
[ 5.72116375e-01 -3.36192799e+00 -6.68362260e-01 -2.81247520e+00
8.36382389e+00 -3.67477946e-02 2.23792076e+00 -2.91093756e-02
-4.56922323e-01 -6.77382052e-01]
[ 1.18602552e+01 -5.09683752e+00 4.54203248e-01 -2.55723000e+00
-8.68753910e+00 6.96948707e-01 -1.50591761e-01 -3.62227589e-01
9.83437955e-01 7.46711075e-01]
[ 7.33289337e+00 -6.65414715e+00 1.57180679e+00 -2.62657452e+00
4.11511570e-01 -1.35336161e+00 -1.40558392e-01 3.81030589e-01
1.73799121e+00 8.02671254e-01]
[-3.02898431e+00 1.26861107e+00 -2.04946566e+00 -2.52499342e-01
-2.73597687e-01 -3.01714039e+00 -7.10914516e+00 1.10452967e+01
-5.82177579e-01 1.86712158e+00]
[-7.78098392e+00 -6.01984358e+00 1.23355007e+00 1.18682652e+01
-9.83472538e+00 8.27242088e+00 -1.02135544e+01 3.95661980e-01
6.63226461e+00 3.33681512e+00]
[-2.72245955e+00 -6.74849796e+00 -6.24665642e+00 3.11165476e+00
-4.71174330e-01 1.22390661e+01 -1.23519528e+00 -1.24356663e+00
1.26693976e+00 5.81862879e+00]
[-5.65229607e+00 -1.25138938e+00 3.68380380e+00 1.24947300e+01
-8.21508980e+00 1.61641145e+00 -8.01925087e+00 8.37018967e-01
-2.64613247e+00 7.92313635e-01]
[-3.73405719e+00 -3.41621947e+00 -7.94842839e-01 4.55352879e+00
-2.28238964e+00 1.88887548e+00 -5.84129477e+00 6.03430390e-01
1.05920439e+01 2.25430655e+00]
[-5.44103146e+00 -5.48421431e+00 -3.62234282e+00 1.20194650e+00
3.48899674e+00 1.50794566e+00 -6.30612850e+00 4.01568127e+00
1.61318648e+00 9.87832165e+00]
[-3.34073186e+00 8.10987663e+00 -6.43497527e-01 -1.64372277e+00
-4.42907363e-01 -1.46176386e+00 -8.56327295e-01 5.20323329e-02
1.73289025e+00 -8.17061365e-01]
[-6.88457203e+00 1.38391244e+00 1.33096969e+00 1.28132534e+01
-6.20939922e+00 1.48244214e+00 -6.59804583e+00 -1.38118923e+00
4.26289368e+00 -1.22962976e+00]
[-6.09051991e+00 -3.15275192e+00 1.79273260e+00 9.92699528e+00
-5.97349882e+00 3.68225765e+00 -6.47421646e+00 -1.99264419e+00
2.15714622e+00 2.32836318e+00]
[-3.25946307e+00 8.14360428e+00 -1.00535810e+00 -2.37552500e+00
2.38139248e+00 -2.92597318e+00 -1.54173911e+00 2.25682306e+00
-2.83430189e-01 -1.33554244e+00]
[-2.99147058e+00 3.86941671e+00 8.82810593e+00 2.20121431e+00
-8.40485859e+00 -8.66728902e-01 -5.97998762e+00 -5.21699572e+00
5.80638123e+00 -2.57314467e+00]
[ 8.64277363e+00 -4.99241495e+00 2.84688592e+00 -4.15350378e-01
-1.87728360e-01 -2.40291572e+00 4.42544132e-01 -4.54446167e-01
-1.88113344e+00 -1.23334014e+00]
[-2.00169897e+00 -2.65497804e+00 1.18750989e+00 9.70900059e-01
-4.53840446e+00 -2.65584946e+00 -8.23472023e+00 9.93836498e+00
-5.57100773e-01 3.42955470e+00]
[-3.57249069e+00 -5.03176594e+00 -1.79369414e+00 -5.03321826e-01
-1.97100627e+00 9.01608944e+00 6.62497377e+00 -5.48222637e+00
6.09256268e+00 -4.71334040e-01]
[-5.27715540e+00 -7.84428477e-01 -6.26944721e-01 3.87298250e+00
-1.88836837e+00 1.15252662e+00 -2.98473048e+00 -3.10233998e+00
9.71112537e+00 3.10839200e+00]
[-9.50223565e-01 -6.47654009e+00 2.26750326e+00 1.95419586e+00
1.68217969e+00 1.66003108e+00 9.82697105e+00 -9.94868219e-01
-2.03924966e+00 -1.88321277e-01]
[-3.11575246e+00 3.43664408e+00 1.19877796e+01 4.36916590e+00
-1.17812777e+01 -1.69431508e+00 -5.82668829e+00 -5.09948444e+00
4.15738583e+00 -4.30461359e+00]
[ 9.72177792e+00 -5.31352401e-01 -1.21784186e+00 -1.07392669e+00
-7.11223555e+00 1.67838800e+00 1.01826215e+00 -8.88240516e-01
6.95959151e-01 2.38748863e-01]
[-2.06619406e+00 1.86608231e+00 1.12100420e+01 4.22539425e+00
-1.21493711e+01 -4.57662535e+00 -6.88935089e+00 -9.81215835e-01
3.87611055e+00 -3.28470826e+00]
[-6.73031902e+00 -2.54390073e+00 -1.10151446e+00 1.51524162e+01
-1.10052080e+01 6.60323954e+00 -7.94388771e+00 3.31939721e+00
-1.40840662e+00 2.65730071e+00]
[-1.96954179e+00 -1.13817227e+00 9.40351069e-01 -1.75684047e+00
3.60373807e+00 2.01377797e+00 1.00558109e+01 -1.10547984e+00
5.17374456e-01 -3.94047165e+00]
[-5.81787634e+00 -1.20211565e+00 -3.53216052e+00 1.17569458e+00
4.21314144e+00 -2.53644252e+00 -7.64466667e+00 4.19782829e+00
4.28840429e-01 1.04579344e+01]
[-4.20310974e+00 -3.19272375e+00 -4.62792778e+00 2.71683741e+00
4.43899345e+00 3.31357956e-01 -6.24839544e+00 3.80388188e+00
-1.22620119e-02 9.65024757e+00]
[-8.26945066e-01 -5.25947523e+00 3.72772887e-02 2.30585241e+00
-4.95726252e+00 -1.19987357e+00 -1.20395079e+01 1.53253164e+01
-2.10372299e-01 1.89387524e+00]
[-5.09596729e+00 -7.76027665e-02 -9.53466833e-01 2.89041376e+00
-1.50858855e+00 2.27854323e+00 -1.95591903e+00 -3.15785193e+00
1.00103540e+01 1.08987451e+00]
[-4.01680946e-01 -4.62062168e+00 3.90530303e-02 -1.66790807e+00
5.43311167e+00 -1.78802896e+00 -2.88405848e+00 2.93439984e+00
-2.16558409e+00 8.71198368e+00]
[-1.29969406e+00 -3.92871022e+00 -3.82151055e+00 -2.93831253e+00
1.03674269e+01 8.88044477e-01 7.88922787e-01 3.86107159e+00
1.60807288e+00 -3.76913965e-01]
[-2.25020099e+00 -8.17249107e+00 -1.82360613e+00 -5.90175152e-01
4.72407389e+00 9.39436078e-01 -3.85674310e+00 3.95303702e+00
1.83473241e+00 9.13874054e+00]
[-3.26617742e+00 -2.91517663e+00 8.37770653e+00 1.61820054e-01
-2.98638320e+00 -2.47211266e+00 5.08574843e-01 4.65608168e+00
2.66001201e+00 -4.67262363e+00]
[-2.29874635e+00 7.77097034e+00 1.11359918e+00 -2.06103897e+00
-7.61267126e-01 1.00877440e+00 1.47708499e+00 -1.20483887e+00
1.99922264e+00 -3.81118345e+00]
[-6.87821198e+00 -9.18823600e-01 2.16773844e+00 1.07671242e+01
-7.48823595e+00 2.90310860e+00 -1.02075748e+01 -3.83400464e+00
4.76818371e+00 4.06564474e+00]
[-2.06487226e+00 8.76828384e+00 1.10449910e+00 -2.29669046e+00
-1.15668392e+00 -2.50351834e+00 -1.69508122e-02 -1.05916834e+00
1.91057479e+00 -2.64592767e+00]
[-2.24318981e+00 9.02024174e+00 1.38990092e+00 -2.72154903e+00
1.46101296e-01 -4.43454313e+00 -8.21092844e-01 -2.40808502e-01
3.36577922e-01 -2.63193059e+00]
[-4.35961342e+00 -7.74704576e-01 -2.74345660e+00 -3.27951574e+00
1.50971518e+01 -2.80669570e+00 -1.28740633e+00 3.94157290e+00
4.20372874e-01 8.37333024e-01]
[-2.80749345e+00 -3.33036280e+00 -1.00865018e+00 4.57633829e+00
-5.03952360e+00 2.93345642e+00 -8.54609489e+00 2.26549125e+00
4.73208952e+00 5.93849993e+00]
[-3.31042576e+00 9.97719002e+00 4.38573778e-01 -1.35296178e+00
-1.21057940e+00 -2.46178842e+00 -8.34564090e-01 2.19030753e-01
2.03147411e+00 -1.80211437e+00]
[-2.14534068e+00 -2.93023801e+00 4.41405416e-01 -2.29865336e+00
1.47422533e+01 -1.86358702e+00 4.61042017e-01 -6.20108247e-01
-1.36792552e+00 2.14018896e-01]
[-2.64241481e+00 -2.28332114e+00 2.01109338e+00 9.67352509e-01
6.09287119e+00 -2.35626236e-01 -3.02941656e+00 4.32772923e+00
-4.63955021e+00 3.73136783e+00]
[-4.55847168e+00 1.04014337e+00 9.12987328e+00 2.06433630e+00
-1.67355919e+00 -1.49593079e+00 4.09124941e-01 2.41894865e+00
-6.86871633e-02 -4.42179346e+00]
[-6.10608578e-01 -2.73860097e+00 -1.09864855e+00 -5.68899512e-01
2.45831108e+00 5.50326490e+00 1.22601585e+01 -5.23877192e+00
2.11066246e+00 -2.98584485e+00]
[-5.96745872e+00 -1.91458237e+00 -3.10774088e-01 1.00216856e+01
-3.81997776e+00 7.14399862e+00 -4.61386251e+00 -5.18248987e+00
4.25162363e+00 1.18878789e-01]
[-4.24126434e+00 -9.63249326e-01 1.06391013e+00 4.45316315e+00
-4.47125340e+00 -1.21906054e+00 -9.75789547e+00 1.10335569e+01
-1.17632782e+00 8.78942788e-01]
[ 3.76867175e-01 -4.75102758e+00 -2.59345794e+00 -3.96257102e-01
-7.50329159e-03 1.81642962e+00 -6.01041269e+00 9.97849655e+00
-2.57468176e+00 5.00644207e+00]
[-2.21995306e+00 -4.23465443e+00 -2.19536662e+00 -3.71420813e+00
1.49460211e+01 -2.73240638e+00 3.03538777e-02 4.29108334e+00
1.21963143e+00 6.85284913e-01]
[-1.93794692e+00 -3.39166284e+00 -3.41372967e-01 -2.16144085e-01
1.32588074e-01 -3.83050554e-02 -7.32452822e+00 9.68561840e+00
-1.16044319e+00 3.63913298e+00]
[-3.31972694e+00 -4.84879112e+00 -3.41381001e+00 1.93332338e+00
-5.16150045e+00 1.05730495e+01 1.52961123e+00 -4.64916992e+00
4.11477995e+00 4.80105543e+00]
[-3.22445488e+00 1.01509037e+01 6.03635088e-02 -1.48001885e+00
-3.28380197e-01 -2.36782789e+00 -8.66441727e-01 6.68077886e-01
1.45576179e+00 -1.95271623e+00]
[-5.64618587e+00 -3.71156931e+00 -2.31174397e+00 1.76912701e+00
2.95111752e+00 2.09562635e+00 -5.34609461e+00 -2.59399921e-01
1.10373080e+00 1.10444403e+01]
[ 1.32743053e+01 -5.11389780e+00 1.10446036e+00 -5.01595545e+00
-4.87907743e+00 4.46035750e-02 4.57046556e+00 -1.76434004e+00
-5.40824793e-02 -1.01547205e+00]
[-4.27589798e+00 1.26832044e+00 6.49948978e+00 -8.06193352e-02
1.34645328e-01 6.92090929e-01 -8.92272711e-01 2.15252757e+00
-9.95365143e-01 -2.46636438e+00]
[-5.08349514e+00 -1.79646879e-01 9.57399654e+00 3.35643005e+00
-3.42183971e+00 -2.33653522e+00 -1.98645079e+00 1.50538552e+00
-1.43313253e+00 -9.75638926e-01]
[-8.48450565e+00 -4.32870531e+00 -1.54253757e+00 1.61029205e+01
-8.41084957e+00 5.45092726e+00 -1.00705996e+01 2.31331086e+00
1.05400957e-01 5.19563723e+00]
[-4.89484310e+00 -4.33120441e+00 -3.71932483e+00 -1.18670315e-01
4.70187807e+00 2.67010808e-01 -5.52650118e+00 5.62736416e+00
5.05499423e-01 8.69004250e+00]
[-1.94048929e+00 7.98250961e+00 -3.75457823e-01 -2.09433126e+00
-4.63896915e-02 -2.64650702e+00 -5.73348761e-01 -1.34597674e-01
1.26143038e+00 -1.32178509e+00]
[-6.36190224e+00 5.44552183e+00 1.89667892e+00 3.91665459e+00
-1.99860716e+00 2.76620483e+00 3.57649279e+00 -3.53898597e+00
-1.21411644e-01 -2.60307193e+00]
[-3.60333633e+00 4.92228556e+00 2.87770915e+00 1.31902504e+00
-4.28756446e-01 -3.29862523e+00 -2.29294825e+00 -1.10349190e+00
3.81862259e+00 -1.23572731e+00]
[ 1.06328213e+00 -6.86575174e+00 -3.61938500e+00 1.15000987e+00
-2.32747698e+00 1.32029047e+01 -3.19671059e+00 8.91836137e-02
4.70500660e+00 2.51928687e+00]
[ 1.00363417e+01 -8.02793884e+00 9.38569680e-02 -2.78522468e+00
-2.84671545e+00 2.95867848e+00 4.23545599e+00 2.52083421e+00
-3.35666537e+00 1.45630157e+00]]
你甚至不愿意Start的Github
Mxnet速查_CPU和GPU的mnist预测训练_模型导出_模型导入再预测_导出onnx并预测的更多相关文章
- Keras速查_CPU和GPU的mnist预测训练_模型导出_模型导入再预测_导出onnx并预测
需要做点什么 方便广大烟酒生研究生.人工智障炼丹师算法工程师快速使用keras,所以特写此文章,默认使用者已有基本的深度学习概念.数据集概念. 系统环境 python 3.7.4 tensorflow ...
- 百度Paddle速查_CPU和GPU的mnist预测训练_模型导出_模型导入再预测_导出onnx并预测
需要做点什么 方便广大烟酒生研究生.人工智障炼丹师算法工程师快速使用百度PaddelPaddle,所以特写此文章,默认使用者已有基本的深度学习概念.数据集概念. 系统环境 python 3.7.4 p ...
- [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题
[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存 ...
- 人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练
人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练 MXNet 是一个轻量级.可移植.灵活的分布式深度学习框架,2017 年 1 月 23 日,该项目进入 Apache 基金会,成为 ...
- numpy(ndarray)和tensor(GPU上的numpy)速查
类型(Types) Numpy PyTorch np.ndarray torch.Tensor np.float32 torch.float32; torch.float np.float64 tor ...
- mxnet:结合R与GPU加速深度学习
转载于统计之都,http://cos.name/tag/dmlc/,作者陈天奇 ------------------------------------------------------------ ...
- CUDA 7.0 速查手册
Create by Jane/Santaizi 03:57:00 3/14/2016 All right reserved. 速查手册基于 CUDA 7.0 toolkit documentation ...
- 常用的14种HTTP状态码速查手册
分类 1xx \> Information(信息) // 接收的请求正在处理 2xx \> Success(成功) // 请求正常处理完毕 3xx \> Redirection(重定 ...
- jQuery 常用速查
jQuery 速查 基础 $("css 选择器") 选择元素,创建jquery对象 $("html字符串") 创建jquery对象 $(callback) $( ...
随机推荐
- 【爬虫】让我沉醉的python爬虫技术
今天终于有机会好好学习我一直梦寐以求想掌握的爬虫技术,其实爬虫技术涉及的面不多,我力求做到精通写在简历上. 1.工程分析流程 (1)需求分析 ①目标网站:②抓取内容:③存储格式. (2)项目实施 分析 ...
- react 也就这么回事 05 —— 组件 & Props
什么是组件:用来实现局部功能的可复用代码片段 比如很多界面会用到"分页"功能,因此可以将它封装成独立的组件 这样用到分页的界面只需引入该组件而不必重新写代码 1 定义组件 在 Re ...
- 使用Vscode和Cmake打造跨平台的C++ IDE
准备工作 Viusal Studio Code 64位 :Download Visual Studio Code - Mac, Linux, Windows Cmake 3.4 :Download | ...
- 聊聊视频中的编解码器,你所不知道的h264、h265、vp8、vp9和av1编解码库
你知道FFmpeg吗?了解过h264/h265/vp8/vp9编解码库吗? 我们日常生活中使用最广泛的五种视频编码:H264(AVC).H265(HEVC).vp8.vp9.av1都分别是什么?由哪些 ...
- e值计算来了
e值该如何计算呢? 若关于ex幂级数展开 ex=1+x+x2/2!+x3/3!+•••+xn/n! 取x=1,有e=1+1/2+1/6+••• 接下来就是十分简单的编程 这里选用了python语言(当 ...
- VBS文件无限循环解决办法
VBS文件无限循环解决办法,也就相当于编程中的停止运行指令. 那么如何关掉VBS文件呢?当然关机后会自动关掉,还有另外一种方法就是,在"任务管理器"中找到进程"WScri ...
- VB、VBA、VBS的区别与联系
概念 VB Visual Basic(简称VB)是Microsoft公司开发的一种通用的基于对象的程序设计语言,为结构化的.模块化的.面向对象的.包含协助开发环境的事件驱动为机制的可视化程序设计语 ...
- 拉普拉斯特征映射(Laplacian Eigenmaps)
1 介绍 拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系.也许这样讲有些抽象,具体来讲, ...
- SpringBoot---Eclipse编辑yml文件不能自动提示的问题(Eclipse安装插件STS)
在学习了几天SpringBoot之后,刚开始跟着别人的博客使用的是IDEA,后来跟着视频学,讲师用的eclipse,便跟着用了,但是发现在编辑yml配置文件的时候,没有自动提示的功能,百度之后发现是没 ...
- 一个最简单的Dubbo入门框架
Dubbo背景和简介 Dubbo开始于电商系统,因此在这里先从电商系统的演变讲起. 1.单一应用框架(ORM) 当网站流量很小时,只需一个应用,将所有功能如下单支付等都部署在一起,以减少部署节点和成本 ...