【项目实战】CNN手写识别复杂模型的构造
感谢视频教程:https://www.bilibili.com/video/BV1Y7411d7Ys?p=11
这里开一篇新博客不仅仅是因为教程视频单独出了1p,也是因为这是一种代码编写的套路,特在此做下记录。
这里我们的模型构造采用如下图示
分为一个1x1池化层,然后一个1x1卷积层输出为16通道,一个先1x1卷积再5x5卷积输出为24通道,最后一个1x1卷积和两个3x3卷积后输出为24通道,这四个卷积层最后合并在一起输出。至于为什么会有1x1卷积核,是因为这样转换通道数的时候可以大大的简化计算步骤,减少代码运行时间
具体的代码设计如下
在昨天的代码基础上,首先由于模型较为复杂,所以我们单独写出一个函数,减少代码的冗余
class InceptionA(nn.Module):
def __init__(self, in_channels): # 每一部分都分开编写
super(InceptionA, self).__init__()
self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2) # 因为希望输出的图像大小不变,所以用padding补零
self.branch3x3_1 = nn.Conv2d(in_channels, 16 ,kernel_size=1)
self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
def forward(self, x):
branck1x1 = self.branch1x1(x)
branck5x5 = self.branch5x5_1(x)
branck5x5 = self.branch5x5_2(branck5x5)
branck3x3 = self.branch3x3_1(x)
branck3x3 = self.branch3x3_2(branck3x3)
branck3x3 = self.branch3x3_3(branck3x3)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branck1x1, branck5x5, branck3x3, branch_pool]
return torch.cat(outputs, dim=1) #这里把维度降为1
然后我们再构建模型即可
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5) # 88=24x3+16
self.incep1 = InceptionA(in_channels=10)
self.incep2 = InceptionA(in_channels=20)
self.mp = nn.MaxPool2d(2) # 这里的2是也是由模型计算出来的
self.fc = nn.Linear(1408, 10) # 真正的工作中这里的1408并不需要我们自己去算
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.mp(self.conv1(x)))
x = self.incep1(x)
x = F.relu(self.mp(self.conv2(x)))
x = self.incep2(x)
x = x.view(in_size, -1)
x = self.fc(x)
return x
``
【项目实战】CNN手写识别复杂模型的构造的更多相关文章
- 【项目实战】CNN手写识别
由于只需要修改之前基于ANN模型代码的模型设计部分所以篇幅较短,简单的加点注释给自己查看即可 视频链接:https://www.bilibili.com/video/BV1Y7411d7Ys?p=10 ...
- AI应用开发实战 - 手写识别应用入门
AI应用开发实战 - 手写识别应用入门 手写体识别的应用已经非常流行了,如输入法,图片中的文字识别等.但对于大多数开发人员来说,如何实现这样的一个应用,还是会感觉无从下手.本文从简单的MNIST训练出 ...
- (五) Keras Adam优化器以及CNN应用于手写识别
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Adam,常 ...
- TensorFlow 入门之手写识别CNN 三
TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 ...
- android 开源 OCR 项目 及手写识别
http://blog.csdn.net/archfree/article/details/6023676 1)一个为Android平台,将识别由手机的相机拍摄的图像文本应用程序. http://co ...
- 机器学习实战kNN之手写识别
kNN算法算是机器学习入门级绝佳的素材.书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系.输入没有标签的新数据 ...
- (手写识别) Zinnia库及其实现方法研究
Zinnia库及其实现方法研究 (转) zinnia是一个开源的手写识别库.采用C++实现.具有手写识别,学习以及文字模型数据制作转换等功能. 项目地址 [http://zinnia.sourcefo ...
- tensorflow笔记(四)之MNIST手写识别系列一
tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html ...
- tensorflow笔记(五)之MNIST手写识别系列二
tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...
随机推荐
- Tapdata 实时数据融合平台解决方案(三):数据中台的技术需求
作者介绍:TJ,唐建法,Tapdata 钛铂数据 CTO,MongoDB中文社区主席,原MongoDB大中华区 首席架构师,极客时间MongoDB视频课程讲师. 我们讲完了这个中台的一个架构和它的逻 ...
- Learning Latent Graph Representations for Relational VQA
The key mechanism of transformer-based models is cross-attentions, which implicitly form graphs over ...
- 要想不踩SaaS那些坑,得先了解“SaaS架构”
摘要:围绕当下许多企业青睐的SaaS应用开发,华为云开发者技术服务工程师程泽在DTT首期带来主题为 <SaaS云原生应用典型架构> 的DTT首期直播分享. 本文分享自华为云社区<DT ...
- 任何快速查询IP归属地
最近公司项目需要做一个IP归属地查询的功能,想着如果用现成的API就可以大大提高开发效率,所以在网上的API商店搜索了一番,发现了 APISpace,它里面的IP归属地API非常符合我的开发需求. ...
- kubernetes下kubelet无法启动
错误如下: 09:58:45 kubernetes-node01 kubelet[6248]: F0124 09:58:45.902571 6248 server.go:265] failed to ...
- Elasticsearch的cmd窗口乱码问题(windows)
elasticsearch 7.6.0 windows版日志乱码问题解决 修改jvm.options,如何重启es即可 新增 -Dfile.encoding=GBK
- tarjan算法和缩点
tarjan可以找强连通的分量,但它的作用不只局限于此 缩点,说白了,就是建新图,之后的操作在新图上进行 自己看代码 #include<bits/stdc++.h> using names ...
- Redis系列4:高可用之Sentinel(哨兵模式)
Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 1 背景 从第三篇 Redis系列3:高可用之主从架构 ,我们知道,为Re ...
- odoo14 button 事件调用python方法如何传递参数
1 <field name="user_ids" 2 mode="kanban" 3 nolabel="1" 4 options=&q ...
- vue中vuex实现持久化的几种方法
前提:大家都知道vuex真的数据共享是不持久的,例如登录后一刷新,state中存的token就会消失,导致你需要再次进行登录操作 在这给大家列出几种解决方案: 第一种(也是一些项目中常使用的):使用缓 ...