Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

思路:如果不用动态规划,在两个for循环的情况下,还得依次比较i,j间的每个字符,O(n3)。使用动态规划,O(n2)

char* longestPalindrome(char* s) {
int n = strlen(s);
int max = ;
int pStart = ; bool flag[n][n];
for(int i = ; i < n; i++){
flag[i][i] = true;
for(int j = i+; j < n; j++){
flag[i][j] = false;
}
} for(int j = ; j < n; j++){ //when iterate j, we should already iterated j-1, 可以理解成j之前已排序好=>用插入排序的顺序遍历
for(int i = ; i < j; i++){
if(s[i]==s[j]){
flag[i][j] = (j==i+)?true:flag[i+][j-]; if(flag[i][j] && j-i+ > max){ max = j-i+;
pStart = i;
}
}
}
} s[pStart+max]='\0';
return &s[pStart];
}

方法II:KMP+动态规划,时间复杂度在最好情况下达到O(n)

首先在字符串的每个字符间加上#号。For example: S = “abaaba”, T = “#a#b#a#a#b#a#”。这样所有的回文数都是奇数,以便通过i的对应位置i’获得p[i]
P[i]存储以i为中心的最长回文的长度。For example: 
T = # a # b # a # a # b # a #
P = 0 1 0 3 0 1 6 1 0 3 0 1 0
下面我们说明如何计算P[i]。
假设我们已经处理了C位置(中心位置),它的最长回文数是abcbabcba,L指向它左侧位置,R指向它右侧位置。
现在我们要处理i位置。
if P[ i' ] ≤ R – i,
then P[ i ] ← P[ i' ] 那是因为在L到R范围内,i'的左侧与i的右侧相同,i'的右侧与i的左侧相同,i'左侧与右侧相同 =>i左侧与右侧相同。
else P[ i ] ≥ P[ i' ]. (Which we have to expand past the right edge (R) to find P[ i ].
If the palindrome centered at i does expand past R, we update C to i, (the center of this new palindrome), and extend R to the new palindrome’s right edge.
char* preProcess(char* s) {
int n = strlen(s);
if (n == ) return "^$";
char* ret = malloc(sizeof(char)*(n*+));
char* pRet = ret;
*pRet++ = '^'; //开始符^
for (int i = ; i < n; i++){
*pRet++ = '#';
*pRet++ = s[i];
}
*pRet++ = '#';
*pRet = '$';//结束符$
return ret;
} char* longestPalindrome(char* s) {
char* T = preProcess(s);
int n = strlen(T);
int P[n];
int C = , R = ;
char* ret;
for (int i = ; i < n-; i++) {
int i_mirror = *C-i; // equals to i_mirror = C - (i-C) //if p[i_mirror] < R-i: set p[i] to p[i_mirror]
if(R>i){
if(P[i_mirror] <= R-i){
P[i] = P[i_mirror];
}
else P[i] = R-i;
}
else P[i] = ; //else: Attempt to expand palindrome centered at i
while (T[i + + P[i]] == T[i - - P[i]]) //因为有哨兵^$所以不用担心越界; +1, -1检查下一个元素是否相等,若相等,扩大p[i]
P[i]++; //if the palindrome centered at i does expand past R
if (i + P[i] > R) {
C = i;
R = i + P[i];
}
} // Find the maximum element in P.
int maxLen = ;
int centerIndex = ;
for (int i = ; i < n-; i++) {
if (P[i] > maxLen) {
maxLen = P[i];
centerIndex = i;
}
} ret = malloc(sizeof(char)*maxLen+);
strncpy(ret, s+(centerIndex - - maxLen)/, maxLen);
ret[maxLen] = '\0';
return ret;
}

5. Longest Palindromic Substring (DP)的更多相关文章

  1. leetcode 第五题 Longest Palindromic Substring (java)

    Longest Palindromic Substring Given a string S, find the longest palindromic substring in S. You may ...

  2. Leetcode 之Longest Palindromic Substring(30)

    很经典的一道题,最长回文子串,有多种方法. 首先介绍的一种方法是从中间向两边展开.注意区分aba和abba型的回文串:如果当前最长的子串已经当于两边中最长的子串了,则无需再去判断. //从中间向两边展 ...

  3. LeetCode:5. Longest Palindromic Substring(Medium)

    原题链接:https://leetcode.com/problems/longest-palindromic-substring/description/ 1. 题目要求:找出字符串中的最大回文子串 ...

  4. leetcode:Longest Palindromic Substring(求最大的回文字符串)

    Question:Given a string S, find the longest palindromic substring in S. You may assume that the maxi ...

  5. [LeetCode] Longest Palindromic Substring(manacher algorithm)

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  6. LeetCode 5 Longest Palindromic Substring(最长子序列)

    题目来源:https://leetcode.com/problems/longest-palindromic-substring/ Given a string S, find the longest ...

  7. LeetCode OJ:Longest Palindromic Substring(最长的回文字串)

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  8. 21.Longest Palindromic Substring(最长回文子串)

    Level:   Medium 题目描述: Given a string s, find the longest palindromic substring in s. You may assume ...

  9. 5.Longest Palindromic Substring (String; DP, KMP)

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

随机推荐

  1. JDK7和JDK8concurrentHashmap区别

    哈希表 1.介绍 哈希表就是一种以 键-值(key-indexed) 存储数据的结构,我们只要输入待查找的值即key,即可查找到其对应的值. 哈希的思路很简单,如果所有的键都是整数,那么就可以使用一个 ...

  2. JEECG-P3开发专题 - 开发环境搭建入门

    官方标准开发工具: 1 .IDE Eclipse Java EE IDE for Web Developers. Version: Mars.2 Release (4.5.2) Build id: 2 ...

  3. Yum安装MySQL以及相关目录路径和修改目录

    有些时候,为了方便,有些同学喜欢通过yum的方式安装MySQL,没有设置统一的文件目录以及软件目录,那么就会为后续的维护工作带来很大的麻烦! 下面就简单介绍一下yum安装MySQL的步骤以及这类安装下 ...

  4. Notepadd ++ PluginManager安装

    下载地址https://github.com/bruderstein/nppPluginManager/releases 解压后有2个包plugins和updater 分别放入C:\Program F ...

  5. MySQL数据库备份工具mysqldump的使用(转)

    说明:MySQL中InnoDB和MyISAM类型数据库,这个工具最新版本好像都已经支持了,以前可能存在于MyISAM的只能只用冷备份方式的说法. 备份指定库: mysqldump -h127.0.0. ...

  6. decode 函数用法

    含义解释: decode(条件,值1,返回值1,值2,返回值2,...值n,返回值n,缺省值) 该函数的含义如下:IF 条件=值1 THEN RETURN(翻译值1)ELSIF 条件=值2 THEN ...

  7. vscode-nextgenas编译配置

    文档:https://github.com/BowlerHatLLC/vscode-nextgenas/wiki/asconfig.json asconfig.json { "config& ...

  8. 修改window本地hosts文件,修改域名指向

    Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应的IP地址建立一个关联“数据库”,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Host ...

  9. 正则表达式(Python)

    课题 使用正则表达式匹配字符串 使用正则表达式 "\d{3}-(\d{4})-\d{2}" 匹配字符串 "123-4567-89" 返回匹配结果:'" ...

  10. python list元素为dict时的排序

    # 简单的dict lst = [('d', 2), ('a', 4), ('b', 3), ('c', 2)] # 按照value排序 lst.sort(key=lambda k: k[1]) pr ...