TZOJ 2999 Network(连通图割点数量)
描述
A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N. No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.
输入
The input consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at most N lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0.
输出
The output contains for each block except the last in the input one line containing the number of critical places.
样例输入
5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0
样例输出
1
2
题意
求连通图关键点数量,关键点为去掉该点图不连通
题解
直接求割点数量
代码
#include<bits/stdc++.h>
using namespace std; const int N=1e5+; vector<int>G[N];
int dfn[N],low[N],tot;
bool cut[N];
void tarjan(int u,int fa)
{
int child=;
dfn[u]=low[u]=++tot;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]&&u!=fa)cut[u]=true;
if(u==fa)child++;
}
low[u]=min(low[u],dfn[v]);
}
if(u==fa&&child>=)cut[u]=true;
}
void init(int n)
{
tot=;
for(int i=;i<=n;i++)
{
G[i].clear();
dfn[i]=low[i]=;
cut[i]=false;
}
}
int main()
{
int n,u,v;
while(~scanf("%d",&n)&&n)
{
init(n);
while(~scanf("%d",&u)&&u)
{
while(getchar()!='\n')
{
scanf("%d",&v);
G[u].push_back(v);
G[v].push_back(u);
}
}
tarjan(,);
int ans=;
for(int i=;i<=n;i++)if(cut[i])ans++;
printf("%d\n",ans);
}
return ;
}
TZOJ 2999 Network(连通图割点数量)的更多相关文章
- TZOJ 2018 SPF(连通图割点和分成的连通块)
描述 Consider the two networks shown below. Assuming that data moves around these networks only betwee ...
- UVA315 Network 连通图割点
题目大意:有向图求割点 题目思路: 一个点u为割点时当且仅当满足两个两个条件之一: 1.该点为根节点且至少有两个子节点 2.u不为树根,且满足存在(u,v)为树枝边(或称 父子边,即u为v在搜索树中的 ...
- POJ1144 Network 题解 点双连通分量(求割点数量)
题目链接:http://poj.org/problem?id=1144 题目大意:给以一个无向图,求割点数量. 这道题目的输入和我们一般见到的不太一样. 它首先输入 \(N\)(\(\lt 100\) ...
- TZOJ 2546 Electricity(去掉割点后形成的最大连通图数)
描述 Blackouts and Dark Nights (also known as ACM++) is a company that provides electricity. The compa ...
- uva-315.network(连通图的割点)
本题大意:求一个无向图额割点的个数. 本题思路:建图之后打一遍模板. /**************************************************************** ...
- poj 1144 (Tarjan求割点数量)
题目链接:http://poj.org/problem?id=1144 描述 一个电话线公司(简称TLC)正在建立一个新的电话线缆网络.他们连接了若干个地点分别从1到N编号.没有两个地点有相同的号码. ...
- POJ1144 Network(割点)题解
Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are c ...
- POJ 1144 Network(割点)
Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are c ...
- POJ1144 Network 无向图割点
题目大意:求以无向图割点. 定义:在一个连通图中,如果把点v去掉,该连通图便分成了几个部分,则v是该连通图的割点. 求法:如果v是割点,如果u不是根节点,则u后接的边中存在割边(u,v),或者v-&g ...
随机推荐
- Office2019都有哪些强大功能
前阵子是微软一年一度的Ignite大会.而其中最引人注目.也是与我们一般人最息息相关的消息,当然是Office 2019的正式发布. 尽管Office 2019所更新的功能,对于Office 365的 ...
- 机器学习进阶-图像金字塔与轮廓检测-图像金字塔-(**高斯金字塔) 1.cv2.pyrDown(对图片做向下采样) 2.cv2.pyrUp(对图片做向上采样)
1.cv2.pyrDown(src) 对图片做向下采样操作,通常也可以做模糊化处理 参数说明:src表示输入的图片 2.cv2.pyrUp(src) 对图片做向上采样操作 参数说明:src表示输入的 ...
- day23-类的封装
1.封装 封装,顾名思义就是将内容封装到某个地方,以后再去调用被封装在某处的内容.所以,在使用面向对象的封装特性时,需要:1)将内容封装到某处2)从某处调用被封装的内容 第一步:将内容封装到某处 cl ...
- hive基础操作
hive --version 查看hive的版本 hive -S -e "set" | grep auto ##在shell下可以查找属性的状态.小技巧.
- 爬虫--Scrapy-持久化存储操作
总体概况 持久化存储操作: a. 磁盘文件 a) 基于终端指令 i. 保证parse方法返回一个可迭代类型的对象(存储解析到的页面内容) ii. 使用终端指令完成数据存储到制定磁盘文件中的操作 1. ...
- windows7 安装虚拟机,xsheel连接不上的问题,记录一下
安装了好久,一直连接不上...,原来是网络没开..重新安装设置就可以了!!!记录一下
- C# 利用反射调用类下的方法
namespace TestReflection { public partial class Form1 : Form { public Form1() { InitializeComponent( ...
- 1.Zabbix配置[仅环境搭建]
Zabbix配置分为两部分1.Zabbix服务端的配置 安装Zabbix源: [root@c71 ~]# rpm -ivh https://mirrors.aliyun.com/zabbix/zabb ...
- Spring STS Call Hierarchy 查找不到被调用的信息
今天使用Spring的STS的时候,发现Call Hierarchy无法使用,很奇怪,发现问题出现在同一个工作区间里,如果工作区间不在此工作区间,发现还是可以找到被调用的信息的.当时在网上找也没找到 ...
- 删除oracle数据库用户
手工删除ORACLE数据库用户时常会出现会话进程仍在使用导致删除失败的情况.需要查询会话并将会话删除才能成功将数据库用户删除,比较不方便. 适用场景 自动删除oracle数据库用户 基本知识 orac ...