题目描述

现有n盏灯,以及m个按钮。每个按钮可以同时控制这n盏灯——按下了第i个按钮,对于所有的灯都有一个效果。按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j]为1,那么当这盏灯开了的时候,把它关上,否则不管;如果为-1的话,如果这盏灯是关的,那么把它打开,否则也不管;如果是0,无论这灯是否开,都不管。

现在这些灯都是开的,给出所有开关对所有灯的控制效果,求问最少要按几下按钮才能全部关掉。

输入输出格式

输入格式:

前两行两个数,n m

接下来m行,每行n个数,a[i][j]表示第i个开关对第j个灯的效果。

输出格式:

一个整数,表示最少按按钮次数。如果没有任何办法使其全部关闭,输出-1

输入输出样例

输入样例#1:

3
2
1 0 1
-1 1 0
输出样例#1:

2

说明

对于20%数据,输出无解可以得分。

对于20%数据,n<=5

对于20%数据,m<=20

上面的数据点可能会重叠。

对于100%数据 n<=10,m<=100

Solution:

  本题状压dp水题。

  定义$f[j]$表示当前灯的状态为$j$的最小花费,初始状态$f[0]=0$,目标状态$f[(1<<n)-1]$($0$为开,$1$为关)。

  用$a_i,b_i$记录下每个按钮的开关效果,然后跑最短路,转移时就二进制捣鼓一下。

  具体来说,若$(i,j)$输入的$x==1$则$a_i|=1<<j-1$,若输入的$x==-1$则$b_i|=1<<j-1$。

  转移时当前状态$sta$转移为$(sta|a_i)\&(~b_i)$就能做到灯的开关变换了。

代码:

/*Code by 520 -- 10.16*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,a[N],b[N],f[<<];
bool vis[<<];
queue<int>q; int main(){
ios::sync_with_stdio();
cin>>n>>m; int x,lim=(<<n)-;
For(i,,m) For(j,,n) {
cin>>x;
if(x==) a[i]|=(<<j-);
if(x==-) b[i]|=(<<j-);
}
memset(f,0x3f,sizeof(f));
f[]=;q.push();
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
For(i,,m) {
int sta=(u|a[i])&(~b[i]);
if(f[sta]>f[u]+) {
f[sta]=f[u]+;
if(!vis[sta]) vis[sta]=,q.push(sta);
}
}
}
cout<<(f[lim]==0x3f3f3f3f?-:f[lim]);
return ;
}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P2622 关灯问题II的更多相关文章

  1. P2622 关灯问题II(状压bfs)

    P2622 关灯问题II 题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯——按下了第i个按钮,对于所有的灯都有一个效果.按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j] ...

  2. luogu p2622关灯问题II

    luogu p2622关灯问题II 题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的灯都有一个效果.按下i按钮对于第j盏灯,是下面3中效果之一:如果a[ ...

  3. 洛谷 P2622 关灯问题II【状压DP;隐式图搜索】

    题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的灯都有一个效果.按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j]为1,那么当这盏灯开了的时 ...

  4. P2622 关灯问题II (状态压缩入门)

    题目链接: https://www.luogu.org/problemnew/show/P2622 具体思路:暴力,尝试每个开关,然后看所有的情况中存不存在灯全部关闭的情况,在储存所有灯的情况的时候, ...

  5. P2622 关灯问题II (状态压缩,最短路)

    题目链接 Solution 这道题算是很经典的状压问题了,好题. 考虑到 \(n\) 的范围仅为 \(10\) , 那么也就是说所有状态压起来也只有 \(1024\) 种情况. 然后我们发现 \(m\ ...

  6. 洛谷 P2622 关灯问题II【状压DP】

    传送门:https://www.luogu.org/problemnew/show/P2622 题面: 题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的 ...

  7. 洛谷 P2622 关灯问题II(状压DP入门题)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 相关变量解释: int n,m; ];//a[i][j] : 第i个开关对第j个 ...

  8. 洛谷P2622 关灯问题II

    洛谷题目链接 声明: 本篇文章不讲基础,对萌新不太友好,(我就是萌新),要学状压$dp$的请另寻,这篇文章只是便于本人查看.... 首先看到$n<=10$,就可以考虑状压了,要求最小值,所以初始 ...

  9. 洛谷P2622 关灯问题II (二进制枚举+bfs

    题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯——按下了第i个按钮,对于所有的灯都有一个效果.按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j]为1,那么当这盏灯开了的时 ...

随机推荐

  1. 处女男学Android(七)---Android 应用资源之StateListDrawable

    前言 本篇Blog将记录关于Android应用资源中最经常使用的一个Drawable资源--StateListDrawable,本来说应当继续写UI方面的内容,突然跳到应用资源这边,主要是由于之前写界 ...

  2. Jupyter Notebook中让python2和python3内核共存

    自己计算机里面共存了Python2和Python3,ipython作为试探性的REPL解释器使用的频率还是挺高的,分别在2和3下安装完ipython notebook后怎么分别使用这两种内核呢 按照默 ...

  3. zookeeper的原理及使用

    ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby.今天这篇 ...

  4. HUE配置HBase

    HBase的配置 修改配置hue.ini的配置文件 [hbase] hbase_clusters=(Cluster|node1:) hbase_conf_dir=/usr/hbase-0.98.12. ...

  5. 动画:view从点逐渐变大(放大效果)

    -(void) animationAlert:(UIView *)view { CAKeyframeAnimation *popAnimation = [CAKeyframeAnimation ani ...

  6. 20155234 《网络对抗》Exp 8 Web基础

    基础问答 什么是表单 可以收集用户的信息和反馈意见,是网站管理者与浏览者之间沟通的桥梁. 表单包括两个部分:一部分是HTML源代码用于描述表单(例如,域,标签和用户在页面上看见的按钮),另一部分是脚本 ...

  7. 20155321 《网络攻防》 Exp9 Web安全基础

    20155321 <网络攻防> Exp9 Web安全基础 基础问题 SQL注入攻击原理,如何防御 原理:在事先定义好的SQL语句的结尾上添加额外的SQL语句(感觉一般是或上一个永真式),以 ...

  8. C语言学习之枚举类型

    前言 枚举(enum)类型是计算机编程语言中的一种数据类型.枚举类型:在实际问题中,有些变量的取值被限定在一个有限的范围内.例如,一个星期内只有七天,一年只有十二个月,一个班每周有六门课程等等.如果把 ...

  9. SSRS配置2:加密管理

    在初始化Reporting Service时,SSRS会自动创建数据库[ReportServer],用于存储报表元数据,报表订阅,以及凭证(Credential)和连接信息等身份验证信息,身份验证数据 ...

  10. 阿里云ECS 固定带宽变为按量付费的方式

    阿里云ECS 固定带宽变为按量付费的方式 阿里云控制台 2.升降配置-降低配置-降低至最低配置 3.为按量带宽设置一个峰值,例如100M. 4.过几分钟,就自动变为按量付费的带宽了.