H - Hawawshi Decryption

对于一个给定的生成数列

R[ 0 ] 已知, (R[ i - 1 ] * a + b) % p = R[ i ] (p 是 质数), 求最小的 x 使得 R[ x ] = t

我们假设存在这样一个数列 S[ i ] = R[ i ] - v, 并且S[ i - 1] * a = S[ i ], 那么将S[ i ] = R[ i ] - v带入可得

v = b / (1-a) 那么我们能得到 R[ i ] = (R[ 0 ] - v) * a ^ n + v, 然后就是解一个高次剩余方程,

注意 a == 1 和 R[ 0 ] == v的情况需要特殊考虑。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e4 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, x, L, R, a, b, p, T, y; struct hashTable {
int head[N+], tot;
struct node {
int val, id, nx;
} a[N+];
void init() {
memset(head, -, sizeof(head));
tot = ;
}
void Insert(int val, int id) {
int p = val % N;
a[tot].val = val;
a[tot].id = id;
a[tot].nx = head[p];
head[p] = tot++;
}
int Find(int val) {
int p = val % N;
for(int i = head[p]; ~i; i = a[i].nx)
if(a[i].val == val) return a[i].id;
return -;
}
} mp; int fastPow(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1ll*ans*a%p;
a = 1ll*a*a%p; b >>= ;
}
return ans;
} int BSGS(int a,int b,int p) {
if(b == ) return ;
if(a == b) return ;
if(!b) return !a ? : -;
mp.init();
int m = ceil(sqrt(p)), x = , y, z;
for(int i = ; i <= m; i++) {
x = 1ll * x * a % p;
if(mp.Find(x) == -) mp.Insert(x, i);
}
x = , y = fastPow(a, p-m-);
for(int i = ; i < m; ++i) {
z = mp.Find(1ll*x*b%p);
if(~z) return i * m + z;
x = 1ll * x * y % p;
}
return -;
} int main() {
// freopen("hawawshi.in", "r", stdin);
scanf("%d", &T);
while(T--) {
scanf("%d%d%d%d%d%d%d", &n, &x, &L, &R, &a, &b, &p);
int q = , r = R-L+;
if(a == ) {
for(int R0 = L; R0 <= R; R0++) {
int pos = 1ll*(x-R0+p)%p*fastPow(b, p-)%p;
if(pos < n) q++;
}
} else {
int v = 1ll * b * fastPow(-a+p, p-) % p;
for(int R0 = L; R0 <= R; R0++) {
if(R0 == v) {
if(R0 == x) q++;
} else {
int pos = BSGS(a, 1ll*(x-v+p)%p*fastPow((R0-v+p)%p, p-)%p, p);
if(~pos && pos < n) q++;
}
}
}
int gcd = __gcd(q, r);
printf("%d/%d\n", q/gcd, r/gcd);
}
return ;
} /*
*/

2018 Arab Collegiate Programming Contest (ACPC 2018) H - Hawawshi Decryption 数学 + BSGS的更多相关文章

  1. 2018 Arab Collegiate Programming Contest (ACPC 2018) E - Exciting Menus AC自动机

    E - Exciting Menus 建个AC自动机求个fail指针就好啦. #include<bits/stdc++.h> #define LL long long #define fi ...

  2. 2018 Arab Collegiate Programming Contest (ACPC 2018) G. Greatest Chicken Dish (线段树+GCD)

    题目链接:https://codeforces.com/gym/101991/problem/G 题意:给出 n 个数,q 次询问区间[ li,ri ]之间有多少个 GCD = di 的连续子区间. ...

  3. 2018 German Collegiate Programming Contest (GCPC 18)

    2018 German Collegiate Programming Contest (GCPC 18) Attack on Alpha-Zet 建树,求lca 代码: #include <al ...

  4. (寒假GYM开黑)2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)

    layout: post title: 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018) author: &qu ...

  5. (寒假GYM开黑)2018 German Collegiate Programming Contest (GCPC 18)

    layout: post title: 2018 German Collegiate Programming Contest (GCPC 18) author: "luowentaoaa&q ...

  6. 2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定理

    2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定 ...

  7. 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp

    2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp [P ...

  8. 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)- D. Delivery Delays -二分+最短路+枚举

    2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)- D. Delivery Delays -二分+最短路+枚举 ...

  9. The Ninth Hunan Collegiate Programming Contest (2013) Problem H

    Problem H High bridge, low bridge Q: There are one high bridge and one low bridge across the river. ...

随机推荐

  1. PL/SQL如何设置当前格局确保每次打开都给关闭前一样

    打开plsql  --> windows-->save layout 即可

  2. 【刷题】HDU 5869 Different GCD Subarray Query

    Problem Description This is a simple problem. The teacher gives Bob a list of problems about GCD (Gr ...

  3. Problem A: 踢罐子 解题报告

    Problem A: 踢罐子 Description 平面上有\(n\)个点,其中任意2点不重合,任意3点不共线. 我们等概率地选取一个点A,再在剩下的\(n-1\)个点中等概率地选取一个点B,再在剩 ...

  4. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

  5. acm 比赛模板

    C++模板 A-M https://pan.baidu.com/s/1lqR1s5RcAR52UJLYNfmRTQ C++模板 1-13 https://pan.baidu.com/s/1361ShU ...

  6. OpenStack中MySQL高可用配置

    采用Heartbeat+DRBD+mysql高可用方案,配置两个节点的高可用集群 l  配置各节点互相解析 gb07 gb06 l  配置各节点时间同步 gb07 [root@gb07 ~]# ntp ...

  7. Spring RedisTemplate操作-List操作(4)

    @Autowired @Resource(name="redisTemplate") private RedisTemplate<String, String> rt; ...

  8. 均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation)

    均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation)  1.均方根值(RMS)也称作为效值,它的计算方法是先平方.再平均.然后开方. 2.均方根误差,它是观测值 ...

  9. 获取web页面xpath

    1. Open Chrome 2. Right click the element that you want to get xpath 3. select "Inspector" ...

  10. [转载]详解主流浏览器多进程架构:Chrome、IE

    http://www.cnbeta.com/articles/109595.htm 随着Web浏览器重要性的日益突出,恶意软件.木马.间谍软件等网络攻击也呈现逐渐的上升.而面对 如此众多的潜在威胁,为 ...