2018 Arab Collegiate Programming Contest (ACPC 2018) H - Hawawshi Decryption 数学 + BSGS
对于一个给定的生成数列
R[ 0 ] 已知, (R[ i - 1 ] * a + b) % p = R[ i ] (p 是 质数), 求最小的 x 使得 R[ x ] = t
我们假设存在这样一个数列 S[ i ] = R[ i ] - v, 并且S[ i - 1] * a = S[ i ], 那么将S[ i ] = R[ i ] - v带入可得
v = b / (1-a) 那么我们能得到 R[ i ] = (R[ 0 ] - v) * a ^ n + v, 然后就是解一个高次剩余方程,
注意 a == 1 和 R[ 0 ] == v的情况需要特殊考虑。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e4 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, x, L, R, a, b, p, T, y; struct hashTable {
int head[N+], tot;
struct node {
int val, id, nx;
} a[N+];
void init() {
memset(head, -, sizeof(head));
tot = ;
}
void Insert(int val, int id) {
int p = val % N;
a[tot].val = val;
a[tot].id = id;
a[tot].nx = head[p];
head[p] = tot++;
}
int Find(int val) {
int p = val % N;
for(int i = head[p]; ~i; i = a[i].nx)
if(a[i].val == val) return a[i].id;
return -;
}
} mp; int fastPow(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1ll*ans*a%p;
a = 1ll*a*a%p; b >>= ;
}
return ans;
} int BSGS(int a,int b,int p) {
if(b == ) return ;
if(a == b) return ;
if(!b) return !a ? : -;
mp.init();
int m = ceil(sqrt(p)), x = , y, z;
for(int i = ; i <= m; i++) {
x = 1ll * x * a % p;
if(mp.Find(x) == -) mp.Insert(x, i);
}
x = , y = fastPow(a, p-m-);
for(int i = ; i < m; ++i) {
z = mp.Find(1ll*x*b%p);
if(~z) return i * m + z;
x = 1ll * x * y % p;
}
return -;
} int main() {
// freopen("hawawshi.in", "r", stdin);
scanf("%d", &T);
while(T--) {
scanf("%d%d%d%d%d%d%d", &n, &x, &L, &R, &a, &b, &p);
int q = , r = R-L+;
if(a == ) {
for(int R0 = L; R0 <= R; R0++) {
int pos = 1ll*(x-R0+p)%p*fastPow(b, p-)%p;
if(pos < n) q++;
}
} else {
int v = 1ll * b * fastPow(-a+p, p-) % p;
for(int R0 = L; R0 <= R; R0++) {
if(R0 == v) {
if(R0 == x) q++;
} else {
int pos = BSGS(a, 1ll*(x-v+p)%p*fastPow((R0-v+p)%p, p-)%p, p);
if(~pos && pos < n) q++;
}
}
}
int gcd = __gcd(q, r);
printf("%d/%d\n", q/gcd, r/gcd);
}
return ;
} /*
*/
2018 Arab Collegiate Programming Contest (ACPC 2018) H - Hawawshi Decryption 数学 + BSGS的更多相关文章
- 2018 Arab Collegiate Programming Contest (ACPC 2018) E - Exciting Menus AC自动机
E - Exciting Menus 建个AC自动机求个fail指针就好啦. #include<bits/stdc++.h> #define LL long long #define fi ...
- 2018 Arab Collegiate Programming Contest (ACPC 2018) G. Greatest Chicken Dish (线段树+GCD)
题目链接:https://codeforces.com/gym/101991/problem/G 题意:给出 n 个数,q 次询问区间[ li,ri ]之间有多少个 GCD = di 的连续子区间. ...
- 2018 German Collegiate Programming Contest (GCPC 18)
2018 German Collegiate Programming Contest (GCPC 18) Attack on Alpha-Zet 建树,求lca 代码: #include <al ...
- (寒假GYM开黑)2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)
layout: post title: 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018) author: &qu ...
- (寒假GYM开黑)2018 German Collegiate Programming Contest (GCPC 18)
layout: post title: 2018 German Collegiate Programming Contest (GCPC 18) author: "luowentaoaa&q ...
- 2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定理
2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定 ...
- 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp
2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp [P ...
- 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)- D. Delivery Delays -二分+最短路+枚举
2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)- D. Delivery Delays -二分+最短路+枚举 ...
- The Ninth Hunan Collegiate Programming Contest (2013) Problem H
Problem H High bridge, low bridge Q: There are one high bridge and one low bridge across the river. ...
随机推荐
- PL/SQL如何设置当前格局确保每次打开都给关闭前一样
打开plsql --> windows-->save layout 即可
- 【刷题】HDU 5869 Different GCD Subarray Query
Problem Description This is a simple problem. The teacher gives Bob a list of problems about GCD (Gr ...
- Problem A: 踢罐子 解题报告
Problem A: 踢罐子 Description 平面上有\(n\)个点,其中任意2点不重合,任意3点不共线. 我们等概率地选取一个点A,再在剩下的\(n-1\)个点中等概率地选取一个点B,再在剩 ...
- 洛谷P3935 Calculating(整除分块)
题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...
- acm 比赛模板
C++模板 A-M https://pan.baidu.com/s/1lqR1s5RcAR52UJLYNfmRTQ C++模板 1-13 https://pan.baidu.com/s/1361ShU ...
- OpenStack中MySQL高可用配置
采用Heartbeat+DRBD+mysql高可用方案,配置两个节点的高可用集群 l 配置各节点互相解析 gb07 gb06 l 配置各节点时间同步 gb07 [root@gb07 ~]# ntp ...
- Spring RedisTemplate操作-List操作(4)
@Autowired @Resource(name="redisTemplate") private RedisTemplate<String, String> rt; ...
- 均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation)
均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation) 1.均方根值(RMS)也称作为效值,它的计算方法是先平方.再平均.然后开方. 2.均方根误差,它是观测值 ...
- 获取web页面xpath
1. Open Chrome 2. Right click the element that you want to get xpath 3. select "Inspector" ...
- [转载]详解主流浏览器多进程架构:Chrome、IE
http://www.cnbeta.com/articles/109595.htm 随着Web浏览器重要性的日益突出,恶意软件.木马.间谍软件等网络攻击也呈现逐渐的上升.而面对 如此众多的潜在威胁,为 ...