【LOJ】#6433. 「PKUSC2018」最大前缀和
题解
神仙的状压啊QAQ
设一个\(f[S]\)表示数字的集合为\(S\)时\(sum[S]\)为前缀最大值的方案数
\(g[S]\)表示数字集合为\(S\)时所有前缀和都小于等于0的方案数
答案就是\(sum_{S} sum[S] * f[S] * g[2^{N} - 1 - S]\)
求\(f\)每次相当于往前面插入一个数,如果\(sum[S] > 0\)就更新
\(f[S \^ (1 << i - 1)] += f[S] (sum[S] > 0)\)
求\(g\)只要每次看看更新的集合总和是不是合法就行了
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 998244353;
int N;
int A[25],sum[(1 << 20) + 5],pos[(1 << 20) + 5],f[(1 << 20) + 5],g[(1 << 20) + 5],ans;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int lowbit(int x) {
return x & (-x);
}
void update(int &x,int y) {
x = inc(x,y);
}
void Solve() {
read(N);
for(int i = 1 ; i <= N ; ++i) read(A[i]);
for(int i = 0 ; i < N ; ++i) pos[1 << i] = i + 1;
for(int S = 1 ; S < (1 << N) ; ++S) {
sum[S] = sum[S ^ lowbit(S)] + A[pos[lowbit(S)]];
}
g[0] = 1;
for(int i = 1 ; i <= N ; ++i) {
f[1 << i - 1] = 1;
}
for(int S = 1 ; S < (1 << N) ; ++S) {
if(sum[S] > 0) {
for(int i = 1 ; i <= N ; ++i) {
if(!(S >> (i - 1) & 1)) {
update(f[S ^ (1 << i - 1)],f[S]);
}
}
}
else {
for(int i = 1 ; i <= N ; ++i) {
if(S >> (i - 1) & 1) {
update(g[S],g[S ^ (1 << i - 1)]);
}
}
}
}
for(int S = 1 ; S < (1 << N) ; ++S) {
int t = mul(f[S],g[(1 << N) - 1 - S]);
t = mul(t,inc(MOD,sum[S]));
update(ans,t);
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
【LOJ】#6433. 「PKUSC2018」最大前缀和的更多相关文章
- LOJ 6433 「PKUSC2018」最大前缀和——状压DP
题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...
- Loj#6433「PKUSC2018」最大前缀和(状态压缩DP)
题面 Loj 题解 先转化题意,其实这题在乘了\(n!\)以后就变成了全排列中的最大前缀和的和(有点拗口).\(n\leq20\),考虑状压\(DP\) 考虑一个最大前缀和\(\sum\limits_ ...
- Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)
题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...
- LOJ#6433. 「PKUSC2018」最大前缀和 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...
- loj 6433 「PKUSC2018」最大前缀和 题解【DP】【枚举】【二进制】【排列组合】
这是个什么集合DP啊- 想过枚举断点但是不会处理接下来的问题了- 我好菜啊 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做 ...
- loj#6433. 「PKUSC2018」最大前缀和(状压dp)
传送门 今天\(PKUWC\)试机的题 看着边上的大佬们一个个\(A\)穿咱还是不会-- 我们考虑枚举最大前缀和,如果一个前缀\(1\)到\(p\)是最大前缀和,那么\(p\)后面的所有前缀和都要小于 ...
- [LOJ #6433]「PKUSC2018」最大前缀和
题目大意:给你一个$n(n\leqslant20)$项的数列$A$,设重排后的数列为$A'$,令$pre_p=\sum\limits_{i=1}^pA'_i$,求$max\{pre_i\}$的期望,乘 ...
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
随机推荐
- plsql auto 常用语法
s=SELECTf=FROMsf=SELECT * FROMw=WHEREo=ORDER BYdF=DELETE FROMsc=SELECT COUNT(1) FROMff=FOR UPDATEl=L ...
- [LOJ6436][PKUSC2018]神仙的游戏
loj description 给你一个只有01和?的字符串,问你是否存在一种把?改成01的方案使串存在一个长度为\(1-n\)的\(border\).\(n\le5\times10^5\) sol ...
- 学习Spring Boot:(十一) 自定义装配参数
前言 SpringMVC 中 Controller 中方法的参数非常灵活,得益于它的强大自动装配,这次将根据上次遗留下的问题,将研究下装配参数. 正文 SpringMVC中使用了两个接口来处理参数: ...
- MySQL的COUNT()函数理解
MySQL的COUNT()函数理解 标签(空格分隔): MySQL5.7 COUNT()函数 探讨 写在前面的话 细心的朋友会在平时工作和学习中,可以看到MySQL的COUNT()函数有多种不同的参数 ...
- 在c语言中嵌入汇编语句,对于我来说相当难。
今天早上在csdn论坛上看到一个帖子http://topic.csdn.net/u/20120917/14/82f42e17-977a-4824-95bd-7b79db15d283.html:“C语言 ...
- ThinkPHP框架学习(二)
在上一节中,我主要讲到了如何获取ThinkPHP框架,以及虚拟目录和虚拟主机的配置.准备工作完成之后,就可以利用ThinkPHP去部署项目了. 先在工作目录(D:/zend/workspace)下新建 ...
- Spring RedisTemplate操作-List操作(4)
@Autowired @Resource(name="redisTemplate") private RedisTemplate<String, String> rt; ...
- Kafka 温故(二):Kafka的基本概念和结构
一.Kafka中的核心概念 Producer: 特指消息的生产者Consumer :特指消息的消费者Consumer Group :消费者组,可以并行消费Topic中partition的消息Broke ...
- 用matplotlib制作的比较满意的蜡烛图
用matplotlib制作的比较满意的蜡烛图 2D图形制作包, 功能强大, 习练了很久, 终于搞定了一个比较满意的脚本. 特点: 使用方面要非常简单 绘制出来的图要非常的满意, 具有如下的特点 时间和 ...
- python 基础 元组()
# 元组 应用场景 # 尽管 Python的列表中可以存储不同类型的数据 # 但是在开发中,更多的应用场景是 # 1.列表存储相同类型的数据 # 2.通过迭代遍历,在循环体内部,针对列表中的每一项元素 ...