The set [1,2,3,...,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

Note:

  • Given n will be between 1 and 9 inclusive.
  • Given k will be between 1 and n! inclusive.

Example 1:

Input: n = 3, k = 3
Output: "213"

Example 2:

Input: n = 4, k = 9
Output: "2314"

By observing the sequence for n = 3, we can see the permutation sequence is 1 + [2, 3] permutation, 2 + [1, 3] permutation, 3 + [1, 2] permutation. The sequence with first element = 1 has value k = 1, 2, with first element = 2 has value 3, 4, with first elemnt = 3 has value 5, 6, it's not hard to see that the index of the first element is (k-1)/2!

Next, we want to find the first element for n = 2, since there is only 2! permutation, the new k would be in the range [1, 2!],  if you observe the original k and the permutation:

[2, 3] k = 0 -> new k = 0

[3, 2] k = 1 -> new k = 1

[1, 3] k = 2 -> new k = 0

[3, 1] k = 3 -> new k = 1

[1, 2] k = 4 -> new k = 0

[2, 1] k = 5 -> new k = 1

new k = old k / 2!, it's just the same problem, with smaller n and k, hence we can use either recursive or iterative to solve it.

Key taken: --k, which makes the caculation easier also rules easier to observe, if k == 0, it's the first sequence in the permutation, no further work needed.

Time complexity: O(n*2)

Iterative:

public class PermutationSequenceLT60 {
private int calculateFactorial(int n) {
int factorial = 1;
for(int i = 2; i <= n; ++i) {
factorial *= i;
}
return factorial;
} public String permutation(int n, int k) {
StringBuilder result = new StringBuilder(); List<Integer> nums = new LinkedList<>();
for(int i = 1; i <= n; ++i) {
nums.add(i);
} int factorial = calculateFactorial(n); --k;
for(int i = n; k > 0 && i >= 1; --i) {
factorial = factorial/i;
int pos = k/factorial;
result.append(nums.remove(pos));
k = k%factorial;
} for(int num: nums) {
result.append(num);
} return result.toString();
} public static void main(String[] args) {
PermutationSequenceLT60 p = new PermutationSequenceLT60();
System.out.println(p.permutation(4, 9));
for(int i = 1; i <= 6; ++i) {
System.out.println(p.permutation(3, i));
}
for(int i = 1; i<= 24; ++i) {
System.out.println(p.permutation(4, i));
}
}
}

Recursive:

public class PermutationSequenceLT60 {
private int calculateFactorial(int n) {
int factorial = 1;
for(int i = 2; i <= n; ++i) {
factorial *= i;
}
return factorial;
} private void permutationHelper(int k, List<Integer> nums, StringBuilder result, int factorial) {
if(k == 0) {
for(int num: nums) {
result.append(num);
}
return;
} int pos = k/factorial;
result.append(nums.remove(pos));
permutationHelper(k%factorial, nums, result, factorial/nums.size());
} public String permutation(int n, int k) {
StringBuilder result = new StringBuilder(); List<Integer> nums = new LinkedList<>();
for(int i = 1; i <= n; ++i) {
nums.add(i);
} int factorial = calculateFactorial(n-1);
permutationHelper(k-1, nums, result, factorial); return result.toString();
} public static void main(String[] args) {
PermutationSequenceLT60 p = new PermutationSequenceLT60();
System.out.println(p.permutation(4, 9));
for(int i = 1; i <= 6; ++i) {
System.out.println(p.permutation(3, i));
}
for(int i = 1; i<= 24; ++i) {
System.out.println(p.permutation(4, i));
}
}
}

Permutation Sequence LT60的更多相关文章

  1. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  2. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  3. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  4. 【leetcode】 Permutation Sequence (middle)

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  5. 60. Permutation Sequence

    题目: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of t ...

  6. [Leetcode] Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  7. [LeetCode] “全排列”问题系列(二) - 基于全排列本身的问题,例题: Next Permutation , Permutation Sequence

    一.开篇 既上一篇<交换法生成全排列及其应用> 后,这里讲的是基于全排列 (Permutation)本身的一些问题,包括:求下一个全排列(Next Permutation):求指定位置的全 ...

  8. leetcode总结:permutations, permutations II, next permutation, permutation sequence

    Next Permutation: Implement next permutation, which rearranges numbers into the lexicographically ne ...

  9. Java for LeetCode 060 Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

随机推荐

  1. webpack-manifest-plugin

    [webpack-manifest-plugin] Webpack plugin for generating an asset manifest. This will generate a mani ...

  2. Spread Syntax

    [Spread Syntax] The spread syntax allows an expression to be expanded in places where multiple argum ...

  3. Dubbo启动过程(Spring方式)详解

    一.使用Spring xml配置方式的启动过程 1. 解析XML,注册Bean 2. 监听Spring事件 3. 启动或关闭dubbo 二.详细过程 1. 解析XML,注册Bean 利用Spring提 ...

  4. sqlmap自动注入

    基于python2.7开发 git clone https://github.com/sqlmapproject/sqlmap.git sqlmap-dev

  5. centos 7 搭建openvpn-2.4.6

    参考:https://blog.csdn.net/weixin_42250094/article/details/80384863 http://www.startupcto.com/server-t ...

  6. poj1850(组合数)

    题目链接:http://poj.org/problem;jsessionid=B0D9A01EC0F1043088A37454B6CED469?id=1850 题意:给字符串编号,该字符串必须满足由小 ...

  7. oracle中获取当前整点和上一个小时整点,日期类型

    select to_date(to_char(sysdate,'yyyy-mm-dd hh'),'yyyy-mm-dd hh:mi:ss') from dual;select to_date(to_c ...

  8. http://www.rabbitmq.com/documentation.html

    http://www.rabbitmq.com/documentation.html https://www.gitbook.com/book/geewu/rabbitmq-quick/details

  9. 六.Spring与RabbitMQ集成--HelloWorld

    spring对RabbitMQ做了很好的集成,我们称之为spring AMQP,其官方文档写得十分详尽,文档地址:https://docs.spring.io/spring-amqp/referenc ...

  10. wk1&2 字符串

    [CQ] 自增怎么样都增了,赋值不一定: int x = 2; int y = 2; int i = ++x; int j = y++; System.out.println(x); System.o ...