题意

给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\)

\(n\leq 100\)

分析

  • 考虑矩阵树定理,把对应的树边的边权设置成 \(x\) 然后构造基尔霍夫矩阵, 结果记为 \(val\) ,有

    \[val=\sum_\limits{i=0}^{n-1}x^ians_i
    \]

    其中 \(ans_i\) 表示和 \(S\) 的公共边数量为 \(i\) 的生成树的个数。

  • 发现这是一个关于 \(x\) 的多项式,我们要求每一项的系数 \(ans_i\) ,所以搞出 \(x\in[0, n -1]\) 的 \(val\) 然后高斯消元即可。

  • 总时间复杂度为 \(O(n^4)\)。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') f = -1;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << 3) + (x << 1) + ch - 48;
ch = getchar();
}
return x * f;
}
template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
const int N = 104, mod = 1e9 + 7;
int n;
LL a[N][N], G[N][N], gg[N][N];
LL Pow(LL a, LL b) {
LL res = 1ll;
for(; b; b >>= 1, a = a * a % mod) if(b & 1) res = res * a % mod;
return res;
}
void Gauss(int n, int m, LL (*G)[N]) {
for(int u =0, col = 0; col <= m; ++col, ++u) {
int sel = u;
for(;sel <= n && !G[sel][col]; ++sel);
if(sel > n) { --u; continue;}
if(sel ^ u) {for(int i = 1; i <= m + 1; ++i) swap(G[u][i], G[sel][i]);}
LL inv = Pow(G[u][col], mod - 2);
for(int i = col; i <= m + 1; ++i) G[u][i] = G[u][i] * inv % mod;
for(int v = 1; v <=n; ++v)if(u ^ v) {
LL x = G[v][col];
for(int i = col; i <= m + 1; ++i) G[v][i] = ((G[v][i] - G[u][i] * x) % mod + mod) % mod;
}
}
}
LL det(int n, int m, LL (*G)[N]) {
LL c = 0;
for(int u = 2, col = 2; col <= m; ++col, ++u) {
int sel = u;
for(;sel <= n && !G[sel][col]; ++sel);
if(sel > n) { u--; continue;}
if(sel ^ u) {c ^= 1; for(int i = 1; i <= m; ++i) swap(G[u][i], G[sel][i]);} for(int v = u + 1; v <= n; ++v)
while(G[v][col]) {
LL x = G[v][col] / G[u][col];
for(int i = col; i <= m; ++i) G[v][i] = ((G[v][i] - x * G[u][i])%mod + mod) % mod;
if(!G[v][col]) break;
c ^= 1;
for(int i = 1; i <= m; ++i) swap(G[u][i], G[v][i]);
}
}
LL ans = 1ll;
for(int i = 2; i <= n; ++i) ans = ans * G[i][i] % mod;
if(c) ans = mod - ans;
return ans;
}
int main() {
n = gi();
rep(i, 1, n - 1){
int u = gi(), v = gi();
a[u][v] ++, a[v][u] ++;
}
rep(x, 0, n - 1) {
memset(G, 0, sizeof G);
rep(i, 1, n)
rep(j, 1, n) {
G[j][j] += (a[i][j] ? x : 1);
G[i][j] -= (a[i][j] ? x : 1);
}
rep(i, 1, n)
rep(j, 1, n) if(G[i][j] < 0) G[i][j] += mod;
gg[x][n] = det(n, n, G);
LL tmp = 1;
for(int i = 0; i < n; ++i, tmp = tmp * x % mod) gg[x][i] = tmp;
}
Gauss(n - 1, n - 1, gg);
for(int i = 0; i < n; ++i) printf("%lld%c", gg[i][n], i == n?'\n':' ');
return 0;
}

[CF917D]Stranger Trees[矩阵树定理+解线性方程组]的更多相关文章

  1. CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)

    题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...

  2. Codeforces 917D - Stranger Trees(矩阵树定理/推式子+组合意义)

    Codeforces 题目传送门 & 洛谷题目传送门 刚好看到 wjz 在做这题,心想这题之前好像省选前做过,当时觉得是道挺不错的题,为啥没写题解呢?于是就过来补了,由此可见我真是个大鸽子(( ...

  3. CF917D Stranger Trees

    CF917D Stranger Trees 题目描述 给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合. 矩阵树定理+高斯消元 我们答案为\(f ...

  4. 【Learning】矩阵树定理 Matrix-Tree

    矩阵树定理 Matrix Tree ​ 矩阵树定理主要用于图的生成树计数. 看到给出图求生成树的这类问题就大概要往这方面想了. 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理, ...

  5. 4.9 省选模拟赛 生成树求和 变元矩阵树定理 生成函数 iDFT 插值法

    有同学在loj上找到了加强版 所以这道题是可以交的.LINK:生成树求和 加强版 对于30分 爆搜 可实际上我爆搜只过了25分 有同学使用按秩合并并茶几的及时剪枝通过了30分. const int M ...

  6. UOJ 75 - 【UR #6】智商锁(矩阵树定理+随机+meet-in-the-middle)

    题面传送门 一道很神的矩阵树定理+乱搞的题 %%%%%%%%%%%%%%% vfk yyds u1s1 这种题目我是根本想不出来/kk,大概也就 jgh 这样的随机化带师才能想到出来吧 首先看到生成树 ...

  7. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  8. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

随机推荐

  1. TLS 1.0协议

    TLS1.0 协议发布于1999年初.该协议可在Internet中提供给通信双方一条私有信道,即对通信消息进行加密.该协议主要描述了通信密钥协商的方法与通信格式的定义.分别由TLS Handshake ...

  2. HDFS hflush hsync和close的区别

    HDFS的hflush,hsync和close有啥区别,分别做了什么 hflush: 语义是保证flush的数据被新的reader读到,但是不保证数据被datanode持久化. hsync: 与hfl ...

  3. mysql 建立索引的原则(转)

    索引查询是数据库中重要的记录查询方法,要不要进入索引以及在那些字段上建立索引都要和实际数据库系统的查询要求结合来考虑,下面给出实际中的一些通用的原则: 1. 在经常用作过滤器的字段上建立索引: 2. ...

  4. SQL Server 合并复制的Article可以指定单个对象的更新方向

    如下所示,这是SQL Server中一个合并复制发布端的Article: 我们可以在Article中选择一个对象,比如这里我们选择MD.Car表,点击鼠标右键,选择"Set Properti ...

  5. SQL SERVER中关于OR会导致索引扫描或全表扫描的浅析 (转载)

    在SQL SERVER的查询语句中使用OR是否会导致不走索引查找(Index Seek)或索引失效(堆表走全表扫描 (Table Scan).聚集索引表走聚集索引扫描(Clustered Index ...

  6. 网工最实用最常用的网络命令之一——Ping 命令详解(一)

    Ping是Windows.Unix和Linux系统下的一个命令.ping也属于一个通信协议,是TCP/IP协议的一部分.利用“ping”命令可以检查网络是否连通,可以很好地帮助我们分析和判定网络故障. ...

  7. MySQL应用架构优化-实时数据处理

    1.1. 场景 在和开发人员做优化的时候,讨论最多的应该是结合应用场景编写出合适的SQL.并培训开发应该如何编写SQL让MySQL的性能尽量好.但是有一些的场景对于SQL的优化是行不通的. 打个比方, ...

  8. 使用C#获取Windows Phone手机的各种数据(转)

    转自:http://www.sum16.com/desinger/use-c-sharp-get-windows-phone-information.html 使用C#获取Windows Phone手 ...

  9. 'javac' 不是内部或外部命令,也不是可运行的程序

    今天在命令行中运行javac命令时发现 但是运行java命令却可以 查找jdk的安装路径发现,安装目录里面同时有jdk的文件夹和jre的文件夹 查看了jdk的目录发现jdk目录中也有一个jre文件夹 ...

  10. BZOJ4245:[ONTAK2015]OR-XOR(贪心)

    Description 给定一个长度为n的序列a[1],a[2],...,a[n],请将它划分为m段连续的区间,设第i段的费用c[i]为该段内所有数字的异或和,则总费用为c[1] or c[2] or ...