tf.transpose函数中文意思是转置,对于低维度的转置问题,很简单,不想讨论,直接转置就好(大家看下面文档,一看就懂)。

tf.transpose(a, perm=None, name='transpose') 

Transposes a. Permutes the dimensions according to perm. 

The returned tensor's dimension i will correspond to the input dimension perm[i]. If perm is not given, it is set to (n-1...0), where n is the rank of the input tensor. Hence by default, this operation performs a regular matrix transpose on 2-D input Tensors. 

For example:
# 'x' is [[1 2 3]
# [4 5 6]]
tf.transpose(x) ==> [[1 4]
[2 5]
[3 6]] # Equivalently
tf.transpose(x perm=[1, 0]) ==> [[1 4]
[2 5]
[3 6]] # 'perm' is more useful for n-dimensional tensors, for n > 2
# 'x' is [[[1 2 3]
# [4 5 6]]
# [[7 8 9]
# [10 11 12]]]
# Take the transpose of the matrices in dimension-0
tf.transpose(b, perm=[0, 2, 1]) ==> [[[1 4]
[2 5]
[3 6]] [[7 10]
[8 11]
[9 12]]] Args:
•a: A Tensor.
•perm: A permutation of the dimensions of a.
•name: A name for the operation (optional). Returns: A transposed Tensor.

  

本文主要讨论高维度的情况:

为了形象理解高维情况,这里以矩阵组合举例:

先定义下: 2 x (3*4)表示2个3*4的矩阵,(其实,它是个3维张量)。

x = [[[1,2,3,4],[5,6,7,8],[9,10,11,12]],[[21,22,23,24],[25,26,27,28],[29,30,31,32]]]

输出:

---------------
[[[ 1  2  3  4]
  [ 5  6  7  8]
  [ 9 10 11 12]]

[[21 22 23 24]
  [25 26 27 28]
  [29 30 31 32]]]
---------------

重点来了:

tf.transpose的第二个参数perm=[0,1,2],0代表三维数组的高(即为二维数组的个数),1代表二维数组的行,2代表二维数组的列。
tf.transpose(x, perm=[1,0,2])代表将三位数组的高和行进行转置。

我们写个测试程序如下:

import tensorflow as tf

#x = tf.constant([[1, 2 ,3],[4, 5, 6]])
x = [[[1,2,3,4],[5,6,7,8],[9,10,11,12]],[[21,22,23,24],[25,26,27,28],[29,30,31,32]]]
#a=tf.constant(x)
a=tf.transpose(x, [0, 1, 2])
b=tf.transpose(x, [0, 2, 1])
c=tf.transpose(x, [1, 0, 2])
d=tf.transpose(x, [1, 2, 0])
e=tf.transpose(x, [2, 1, 0])
f=tf.transpose(x, [2, 0, 1]) # 'perm' is more useful for n-dimensional tensors, for n > 2
# 'x' is [[[1 2 3]
# [4 5 6]]
# [[7 8 9]
# [10 11 12]]]
# Take the transpose of the matrices in dimension-0
#tf.transpose(b, perm=[0, 2, 1])
with tf.Session() as sess:
print ('---------------')
print (sess.run(a))
print ('---------------')
print (sess.run(b))
print ('---------------')
print (sess.run(c))
print ('---------------')
print (sess.run(d))
print ('---------------')
print (sess.run(e))
print ('---------------')
print (sess.run(f))
print ('---------------')

  

我们期待的结果是得到如下矩阵:

a: 2 x 3*4

b: 2 x 4*3

c: 3 x 2*4

d: 3 x 4*2

e: 4 x 3*2

f: 4 x 2*3

运行脚本,结果一致,如下:

---------------
[[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]

[[21 22 23 24]
[25 26 27 28]
[29 30 31 32]]]
---------------
[[[ 1 5 9]
[ 2 6 10]
[ 3 7 11]
[ 4 8 12]]

[[21 25 29]
[22 26 30]
[23 27 31]
[24 28 32]]]
---------------
[[[ 1 2 3 4]
[21 22 23 24]]

[[ 5 6 7 8]
[25 26 27 28]]

[[ 9 10 11 12]
[29 30 31 32]]]
---------------
[[[ 1 21]
[ 2 22]
[ 3 23]
[ 4 24]]

[[ 5 25]
[ 6 26]
[ 7 27]
[ 8 28]]

[[ 9 29]
[10 30]
[11 31]
[12 32]]]
---------------
[[[ 1 21]
[ 5 25]
[ 9 29]]

[[ 2 22]
[ 6 26]
[10 30]]

[[ 3 23]
[ 7 27]
[11 31]]

[[ 4 24]
[ 8 28]
[12 32]]]
---------------
[[[ 1 5 9]
[21 25 29]]

[[ 2 6 10]
[22 26 30]]

[[ 3 7 11]
[23 27 31]]

[[ 4 8 12]
[24 28 32]]]
---------------

最后,总结下:

[0, 1, 2]是正常显示,那么交换哪两个数字,就是把对应的输入张量的对应的维度对应交换即可。
---------------------
作者:cc19
来源:CSDN
原文:https://blog.csdn.net/cc1949/article/details/78422704
版权声明:本文为博主原创文章,转载请附上博文链接!

tf.transpose函数的用法讲解的更多相关文章

  1. tf.transpose函数解析

    tf.transpose函数解析 觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.transpose(a, perm = None, name = 'transpose') 解释 将a进 ...

  2. 【转载】 tf.split函数的用法

    原文地址: https://blog.csdn.net/uestc_c2_403/article/details/73350457 由于tensorflow 版本更新问题   用法略有修改 ----- ...

  3. C#累加器函数Aggregate用法 讲解

    Enumerable.Aggregate 扩展方法在System.Linq命名空间中,是Enumerable类的第一个方法(按字母顺序排名),但确是Enumerable里面相对复杂的方法. MSDN对 ...

  4. tensorflow 的tf.split函数的用法

    将张量进行切分 tf.split( value, num_or_size_splits, axis=0, num=None, name='split' ) value: 待切分的张量 num_or_s ...

  5. python中map()函数的用法讲解

    map函数的原型是map(function, iterable, -),它的返回结果是一个列表. 参数function传的是一个函数名,可以是python内置的,也可以是自定义的. 参数iterabl ...

  6. tf.split函数的用法(tensorflow1.13.0)

    tf.split(input, num_split, dimension): dimension指输入张量的哪一个维度,如果是0就表示对第0维度进行切割:num_split就是切割的数量,如果是2就表 ...

  7. tf.transpose()的用法

    一.tensorflow官方文档内容 transpose( a, perm=None, name='transpose' ) Defined in tensorflow/python/ops/arra ...

  8. python numpy的transpose函数用法

    #MXNET的N*C*H*W在numpy打印时比较直观#mxnet卷积层# 输入数据格式是:batch * inchannel * height * width# 输出数据格式是:batch * ou ...

  9. MySQL中 IFNULL、NULLIF和ISNULL函数的用法

    mysql 中 ifnull().nullif().isnull()函数的用法讲解: 一.IFNULL(expr1,expr2)用法: 假如expr1不为NULL,则 IFNULL() 的返回值为ex ...

随机推荐

  1. Codeforces Round #475 (Div. 2) D. Destruction of a Tree

    题意:给你一棵树, 只能删度数为偶数的点, 问你能不能将整个图删完, 如果能输入删除的顺序. 思路:对于一棵树来说, 如果里面的点的个数是偶数个则肯定不可能, 偶数个点有奇数条边,而你每次删只能删偶数 ...

  2. Win7如何解决telnet不是内部或外部命令的方案!

    https://jingyan.baidu.com/article/7908e85c6ec355af491ad265.html Telnet用于远程操作互联网中的设备或终端计算机服务器,可以有效的减少 ...

  3. 聊聊zookeeper的分布式锁

    分布式锁就是多台机器,分布在不同的JVM中,这些不同JVM内的方法需要获取一个唯一锁,比如获取锁之后要把数据写入数据库,保证数据在同一时刻只有一台机器写入数据库. 分布式锁的实现有多种实现方法,除了今 ...

  4. mysql存储过程之游标

    MySQL5 中添加了存储过程的支持.     大多数SQL语句都是针对一个或多个表的单条语句.并非所有的操作都怎么简单.经常会有一个完整的操作需要多条才能完成     存储过程简单来说,就是为以后的 ...

  5. JVM简介堆中新生代老年代浅析

    一.JVM内存结构由程序计数器.堆.栈.本地方法栈.方法区等部分组成.1)程序计数器 几乎不占有内存.用于取下一条执行的指令.2)堆 所有通过new创建的对象的内存都在堆中分配,其大小可以通过-Xmx ...

  6. bzoj 4004 向量拟阵

    题解RT. eps = 1e-10 WrongAnswer eps = 1e-5 Accepted /************************************************* ...

  7. 再谈JavaScript中的闭包

    一.什么是闭包 闭包就是有权访问另一个函数作用域中变量的函数,因此,闭包的本质是一个函数.当一个内部函数被保存到外部时,就会生成闭包. 二.闭包的作用 1.实现公有变量,即通过局部变量实现全局变量的效 ...

  8. 使用 IntraWeb (6) - 页面模板: TIWLayoutMgrHTML、TIWTemplateProcessorHTML

    IW 通过 TIWLayoutMgrHTML 和 TIWTemplateProcessorHTML 使用 HTML 模板. 所谓模板就是一个特殊 HTML 文件, 特殊之处是: 它里面会类似 {% I ...

  9. Spring Data JPA使用keywords关键字实现CAST函数

    对不起,经过几天几夜的使用的研究得出这种方式是无法实现的,在查询上的关键字只有这些: https://docs.spring.io/spring-data/jpa/docs/2.1.x/referen ...

  10. jQuery 事件方法大全-超全的总结

    jquery经常使用的事件: /*     on     off     hover     blur     change     click     dblclick     focus     ...