Building roads

Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1569    Accepted Submission(s): 490

Problem Description

Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.

Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.

That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.

We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.

Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.

 

Input

The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.

Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.

Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.

Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.

The same pair of barns never appears more than once.

Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.

You should note that all the coordinates are in the range [-1000000, 1000000].

 

Output

You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1. 
 

Sample Input

4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3
 

Sample Output

53246
 

Source

 

思路:二分枚举最大值limit,然后重新构图,用2-SAT判定可行性。用Xi表示第i个牛棚连到S1,~Xi表示连到S2,检查每一个约束条件,构图:

1.hate关系的i,j Xi->~Xj ~Xi->Xj Xj->~Xi ~Xj->Xi
2.friend关系的i,j Xi->Xj ~Xi->~Xj Xj->Xi ~Xj->~Xi
接下来的也要检查,因为引入参数,就是多了约束条件了
这四种情况就是i,j到达对方的所有情况了
3.dist(i,S1)+dist(S1,j)>limit Xi->~Xj Xj->Xi
4.dist(i,S2)+dist(S2,j)>limit ~Xi->Xj ~Xj->Xi
5.dist(i,S1)+dist(S1,S2)+dist(S2,j)>limit Xi->Xj ~Xj->~Xi
5.dist(i,S2)+dist(S2,S1)+dist(S1,j)>limit ~Xi->~Xj Xj->Xi

然后求强连通分量判断Xi与~Xi是否在同一个连通分量中,是的话就有矛盾。

 //2017-08-28
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath> using namespace std; const int N = ;
const int M = N*N*;
int head[N], rhead[N], tot, rtot;
struct Edge{
int to, next;
}edge[M], redge[M]; void init(){
tot = ;
rtot = ;
memset(head, -, sizeof(head));
memset(rhead, -, sizeof(rhead));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; redge[rtot].to = u;
redge[rtot].next = rhead[v];
rhead[v] = rtot++;
} vector<int> vs;//后序遍历顺序的顶点列表
bool vis[N];
int cmp[N];//所属强连通分量的拓扑序 //input: u 顶点
//output: vs 后序遍历顺序的顶点列表
void dfs(int u){
vis[u] = true;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v])
dfs(v);
}
vs.push_back(u);
} //input: u 顶点编号; k 拓扑序号
//output: cmp[] 强连通分量拓扑序
void rdfs(int u, int k){
vis[u] = true;
cmp[u] = k;
for(int i = rhead[u]; i != -; i = redge[i].next){
int v = redge[i].to;
if(!vis[v])
rdfs(v, k);
}
} //Strongly Connected Component 强连通分量
//input: n 顶点个数
//output: k 强连通分量数;
int scc(int n){
memset(vis, , sizeof(vis));
vs.clear();
for(int u = ; u < n; u++)
if(!vis[u])
dfs(u);
int k = ;
memset(vis, , sizeof(vis));
for(int i = vs.size()-; i >= ; i--)
if(!vis[vs[i]])
rdfs(vs[i], k++);
return k;
} int n, A, B, dis_s1[N], dis_s2[N], dis_s1_s2;
struct Point{
int x, y;
}point[N], s1, s2, hate[N], friends[N]; //input: 两个点
//output: 两点间距离
double distance(Point a, Point b){
return abs(a.x-b.x) + abs(a.y-b.y);
} bool check(int limit){
init();
// i 表示 i 连 s1, NOT i 表示 i 连 s2
for(int i = ; i < n; i++){
bool fg = true;
if(distance(point[i], s1) > limit){
add_edge(i, i+n);
fg = false;
}
if(distance(point[i], s2) > limit){
if(!fg)return false;
add_edge(i+n, i);
}
for(int j = i+; j < n; j++){
if(dis_s1[i] + dis_s1[j] > limit){
add_edge(i, j+n);// i -> s1, j -> s2
add_edge(j, i+n);// j -> s1, i -> s2
}
if(dis_s2[i] + dis_s2[j] > limit){
add_edge(i+n, j);// i -> s2, j -> s1
add_edge(j+n, i);// j -> s2, i -> s1
}
if(dis_s1[i] + dis_s1_s2 + dis_s2[j] > limit){
add_edge(i, j);// i -> s1, j -> s1
add_edge(j+n, i+n);// j -> s2, i -> s2
}
if(dis_s2[i] + dis_s1_s2 + dis_s1[j] > limit){
add_edge(i+n, j+n);// i -> s2, j -> s2
add_edge(j, i);// j -> s1, i -> s1
}
}
}
for(int i = ; i < A; i++){
int u = hate[i].x, v = hate[i].y;
add_edge(u, v+n);
add_edge(v+n, u);
add_edge(v, u+n);
add_edge(u+n, v);
}
for(int i = ; i < B; i++){
int u = friends[i].x, v = friends[i].y;
add_edge(u, v);
add_edge(v, u);
add_edge(u+n, v+n);
add_edge(v+n, u+n);
}
scc(*n);
for(int i = ; i < n; i++){
if(cmp[i] == cmp[i+n])
return false;
}
return true;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputE.txt", "r", stdin);
while(cin>>n>>A>>B){
cin>>s1.x>>s1.y>>s2.x>>s2.y;
dis_s1_s2 = distance(s1, s2);
for(int i = ; i < n; i++){
cin>>point[i].x>>point[i].y;
dis_s1[i] = distance(point[i], s1);
dis_s2[i] = distance(point[i], s2);
}
for(int i = ; i < A; i++){
cin>>hate[i].x>>hate[i].y;
hate[i].x--;
hate[i].y--;
}
for(int i = ; i < B; i++){
cin>>friends[i].x>>friends[i].y;
friends[i].x--;
friends[i].y--;
}
//r 开小了HDU会TLE,ORZ。。。
int l = , r = , mid, ans = -;
while(l <= r){
mid = (l+r)/;
if(check(mid)){
ans = mid;
r = mid-;
}else l = mid+;
}
cout<<ans<<endl;
}
return ;
}

HDU1815(二分+2-SAT)的更多相关文章

  1. HDU1815 2-sat+二分

    Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  2. hdu1815 2sat + 二分 + 建图

    题意:       给你两个总部,s1 ,s2,和n个点,任意两点之间都是通过这个总部相连的,其中有一些点不能连在同一个总部上,有一些点可以连接在同一个总部上,总部和总部之间可以直接连接,就是假如a, ...

  3. HDU1815 Building roads(二分+2-SAT)

    Problem Description Farmer John's farm has N barns, and there are some cows that live in each barn. ...

  4. 证明与计算(3): 二分决策图(Binary Decision Diagram, BDD)

    0x01 布尔代数(Boolean algebra) 大名鼎鼎鼎的stephen wolfram在2015年的时候写了一篇介绍George Boole的文章:George Boole: A 200-Y ...

  5. Map Labeler POJ - 2296(2 - sat 具体关系建边)

    题意: 给出n个点  让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...

  6. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  7. UVALive - 3211 (2-SAT + 二分)

    layout: post title: 训练指南 UVALive - 3211 (2-SAT + 二分) author: "luowentaoaa" catalog: true m ...

  8. hdu3715 2-sat+二分

    Go Deeper 题意:确定一个0/1数组(size:n)使得满足最多的条件数.条件在数组a,b,c给出. 吐槽:哎,一水提,还搞了很久!关键是抽象出题目模型(如上的一句话).以后做二sat:有哪些 ...

  9. POJ 2749 2SAT判定+二分

    题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...

随机推荐

  1. 我的AI之路 —— 从裸机搭建GPU版本的深度学习环境

    之前一直在CPU上跑深度学习,由于做的是NLP方向所以也能勉强忍受.最近在做图像的时候,实在是扛不住了...还好领导们的支持买个虚拟机先体验下.由于刚买的机器,环境都得自己摸索,瞎搞过很多次,也走过很 ...

  2. maven项目无法新增java test目录的问题

    有时候当我们构建好maven项目时,再导入eclipse中会缺少src/main/java  和src/test/java,这是需要我们手动创建: 但是有时候在 项目视图下或者 enterprise ...

  3. Javascript如何避免连续调用中取到不存在的属性而导致报TypeError错?

    背景: 在最近的 NODEJS 项目中,涉及到数据库的查询,回调函数里返回了查询结果,我这样做处理然后返回给前端: return results.collect_coupon[0].count 但是这 ...

  4. Swift 里 Array (四) Accessing Elements

    根据下标取值 关键代码如下: func _getElement( _ index: Int, wasNativeTypeChecked: Bool, matchingSubscriptCheck: _ ...

  5. Liferay-Activiti 企业特性功能介绍 (新版Liferay7)

    前言 如果你是开发者 你已经是多少次开发一个项目,一次次的用一些框架,一次次的写类似的重复的代码,一次次建表\写类和方法\写HTML\CSS\JAVASCRIPT,一次次测试,一次次的写Bug...如 ...

  6. Python小白学习之路(二十六)—【if __name__ =='__main__':】【用状态标识操作】

    规则一: 一个python文件中,只写一些可以运行的功能测试代码写在这句代码下面 if __name__ =='__main__': 在讲这边的时候,我不是很懂参考了一篇博客,地址如下:http:// ...

  7. 谈一谈对MySQL InnoDB的认识及数据库事物处理的隔离级别

    介绍: InnoDB引擎是MySQL数据库的一个重要的存储引擎,和其他存储引擎相比,InnoDB引擎的优点是支持兼容ACID的事务(类似于PostgreSQL),以及参数完整性(有外键)等.现在Inn ...

  8. 利用Makefile安装helloworld模块(速成)

    这学期对了一门操作系统,满怀着好奇装了虚拟机然后安了Ubuntu,这周作业是编译内核和安装个模块,妈耶,折腾了我一两天.终于弄完,CSDN上有挺多类似的教程,例如陈皓的跟我一起写Makefile,写的 ...

  9. python安装mysqlclient模块报fatal error: Python.h:解决方法

    在搭建Flask框架安装mysqlclient模块时候老是报fatal error: Python.h:错误,折腾老半天,百度了老半天看了不少大神帖子,就是没解决, 后来发现这不是个BUG,都是自己的 ...

  10. 安装SVN并进行汉化的详细步骤

    安装SVN并进行汉化的详细步骤 SAE提供了不同的代码部署方式,可以分为两类:一是通过SVN客户端部署,这是SAE推荐的代码部署方法.另一个是通过非SVN客户端部署,即在线代码在线编辑器和推荐应用安装 ...