考场只打了 \(52\) 分暴力。。。\(ljc\) 跟我说了一下大致思路,我回去敲了敲。

\(f[i]\) 表示状态为 \(i\) 时的方案数。我们用二进制 \(0/1\) 表示不选/选点 \(i\)。

我们设 \(j\in i\) 且拓扑序最小。

\[f[i]=\sum f[i\text{^}2^j]\times 2^{i\&w[j]}
\]

为什么这个是对的呢?

因为 \(j\) 连出的那些没有连向状态 \(i\) 的边一定会被删去,然后那些连向边只用 \(2^i\) 搞一搞。时间复杂度 \(O(n2^n)\)

刚手玩了几组数据好像没错,先放上来好了。

\(Code\ Below:\)

#include <bits/stdc++.h>
using namespace std;
const int mod=998244353;
int n,m,lim,bin[30],w[30],f[1<<20],cnt[1<<20]; int main()
{
scanf("%d%d",&n,&m);lim=(1<<n)-1;
int x,y;
for(int i=0;i<m;i++){
scanf("%d%d",&x,&y);
x--;y--;w[x]|=1<<y;
}
bin[0]=1;
for(int i=1;i<=n;i++) bin[i]=bin[i-1]<<1;
for(int i=1;i<=lim;i++) cnt[i]=cnt[i>>1]+(i&1);
f[0]=1;
for(int i=1;i<=lim;i++)
for(int j=0;j<n;j++)
if(i&bin[j]) f[i]=(f[i]+1ll*f[i^bin[j]]*bin[cnt[i&w[j]]]%mod)%mod;
printf("%d\n",f[lim]);
return 0;
}

「PKUWC2019」拓扑序计数(状压dp)的更多相关文章

  1. loj2540 「PKUWC2018」随机算法 【状压dp】

    题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...

  2. BZOJ1688 「USACO05OPEN」Disease Manangement 背包+状压DP

    问题描述 BZOJ1688 题解 背包,在转移过程中使用状压. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; ...

  3. LOJ#6433. 「PKUSC2018」最大前缀和 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...

  4. LOJ 6433 「PKUSC2018」最大前缀和——状压DP

    题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...

  5. 「SCOI2005」互不侵犯 (状压DP)

    题目链接 在\(N\times N\) 的棋盘里面放 \(K\)个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共\(8\) 个格子 ...

  6. loj #6177. 「美团 CodeM 初赛 Round B」送外卖2 状压dp floyd

    LINK:#6177.美团 送外卖2 一道比较传统的状压dp题目. 完成任务 需要知道自己在哪 已经完成的任务集合 自己已经接到的任务集合. 考虑这个dp记录什么 由于存在时间的限制 考虑记录最短时间 ...

  7. [BZOJ1494][NOI2007]生成树计数 状压dp 并查集

    1494: [NOI2007]生成树计数 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 793  Solved: 451[Submit][Status][ ...

  8. HDU5117 Fluorescent 期望 计数 状压dp 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/HDU5117.html 题目传送门 - HDU5117 题意 $T$ 组数据. 给你 $n$ 盏灯 ,$m$ 个 ...

  9. 「状压DP」「暴力搜索」排列perm

    「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...

随机推荐

  1. java struts2 的 文件下载

    jsp: <%@ page language="java" contentType="text/html; charset=UTF-8" pageEnco ...

  2. GG镜像导航

    供程序员使用. http://dir.scmor.com/google/

  3. rails 新建user的phonenumber字段

    1.新建字段 //rails g migration add_字段名_to_表名 字段名:字段类型 rails g migration add_title_to_contents title:stri ...

  4. 2018.11.28 poj3294 Life Forms(后缀数组+双指针)

    传送门 后缀数组经典题目. 我们先把所有的字符串都接在一起. 然后求出hththt数组和sasasa数组. 然后对于sasasa数组跑双指针统计答案. 如果双指针包括进去的属于不同字符串的数量达到了题 ...

  5. SPRING 集成 activemq 的 topic 模式

    概要 activemq 支持两种模式: 1.队列模式 2. 发布订阅者模式,topic有一个主题可以有多个订阅者.这种情况可以将一个消息,分发到多个消费者. 比如我有这样一个案例,用户需要同步,而且需 ...

  6. 对象序列化:pickle和shelve

    import pickle class DVD: def __init__(self,tilte,year=None,duration=None,director_id=None): self.tit ...

  7. jquery checkbox反复调用attr('checked', true/false)只有第一次生效 Jquery 中 $('obj').attr('checked',true)失效的几种解决方案

    1.$('obj').prop('checked',true) 2. $(':checkbox').each(function(){ this.checked=true; }) 为什么:attr为失效 ...

  8. lnmp源码编译安装zabbix

    软件安装 Mysql 安装 tar xf mysql-5.7.13-1.el6.x86_64.rpm-bundle.tar -C mysql rpm -e --nodeps  mysql-libs-5 ...

  9. 10-padding(内边距)

    padding padding:就是内边距的意思,它是边框到内容之间的距离 另外padding的区域是有背景颜色的.并且背景颜色和内容的颜色一样.也就是说background-color这个属性将填充 ...

  10. CentOS和Ubuntu哪个好?

    CentOS(Community ENTerprise Operating System)是Linux发行版之一,它是来自于Red Hat Enterprise Linux依照开放源代码规定释出的源代 ...