Description

Did you know that you can use domino bones for other things besides playing Dominoes? Take a number of dominoes and build a row by standing them on end with only a small distance in between. If you do it right, you can tip the first domino and cause all others to fall down in succession (this is where the phrase ``domino effect'' comes from).

While this is somewhat pointless with only a few dominoes, some people went to the opposite extreme in the early Eighties. Using millions of dominoes of different colors and materials to fill whole halls with elaborate patterns of falling dominoes, they created (short-lived) pieces of art. In these constructions, usually not only one but several rows of dominoes were falling at the same time. As you can imagine, timing is an essential factor here.

It is now your task to write a program that, given such a system of rows formed by dominoes, computes when and where the last domino falls. The system consists of several ``key dominoes'' connected by rows of simple dominoes. When a key domino falls, all rows connected to the domino will also start falling (except for the ones that have already fallen). When the falling rows reach other key dominoes that have not fallen yet, these other key dominoes will fall as well and set off the rows connected to them. Domino rows may start collapsing at either end. It is even possible that a row is collapsing on both ends, in which case the last domino falling in that row is somewhere between its key dominoes. You can assume that rows fall at a uniform rate.

Input

The input file contains descriptions of several domino systems. The first line of each description contains two integers: the number n of key dominoes (1 <= n < 500) and the number m of rows between them. The key dominoes are numbered from 1 to n. There is at most one row between any pair of key dominoes and the domino graph is connected, i.e. there is at least one way to get from a domino to any other domino by following a series of domino rows.

The following m lines each contain three integers a, b, and l, stating that there is a row between key dominoes a and b that takes l seconds to fall down from end to end.

Each system is started by tipping over key domino number 1.

The file ends with an empty system (with n = m = 0), which should not be processed.

Output

For each case output a line stating the number of the case ('System #1', 'System #2', etc.). Then output a line containing the time when the last domino falls, exact to one digit to the right of the decimal point, and the location of the last domino falling, which is either at a key domino or between two key dominoes(in this case, output the two numbers in ascending order). Adhere to the format shown in the output sample. The test data will ensure there is only one solution. Output a blank line after each system.

Sample Input

2 1
1 2 27
3 3
1 2 5
1 3 5
2 3 5
0 0

Sample Output

System #1
The last domino falls after 27.0 seconds, at key domino 2. System #2
The last domino falls after 7.5 seconds, between key dominoes 2 and 3.
   题目大意:给你n个关键的多米诺骨牌,这n个关键的多米诺骨牌由m条由骨牌组成的“路”相连,每条路都有自己的“长度”,当这n个骨牌中的任意一个骨牌 k 倒塌时,与k相连的所有“路”上的骨牌也会随之而倒,让你求把骨牌 1 推到后,所有骨牌中最后一个倒塌的骨牌距离骨牌1的最短距离。
   解题思路:题目中保证图是连通的,我们可以先求出骨牌1到其他(n - 1)个关键骨牌的最短距离,得到这些距离中的最大值MAX,然后枚举图中的每条边,再更新MAX,具体详解请看程序:
#include<iostream>
#include<string>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
using namespace std ;
int n , m ;
const int MAXN = 505 ;
struct Node
{
int adj ;
double dis ;
};
const int INF = 0x7fffffff ;
int t ;
vector<Node> vert[MAXN] ;
double d[MAXN] ; // 保存顶点 1 到其他(n - 1)个顶点的最短距离
void clr() // 初始化
{
int i ;
for(i = 0 ; i < MAXN ; i ++)
vert[i].clear() ;
memset(d , 0 ,sizeof(d)) ;
}
void init()
{
clr() ;
int i , j ;
Node tmp ;
for(i = 0 ; i < m ; i ++) // 用邻接表建图
{
int a , b ;
double c ;
scanf("%d%d%lf" , &a , &b , &c) ; tmp.adj = b ;
tmp.dis = c ;
vert[a].push_back(tmp) ; tmp.adj = a ;
tmp.dis = c ;
vert[b].push_back(tmp) ;
}
}
queue<int> q ;
bool inq[MAXN] ;
void spfa(int u) // 求最短路
{
while (!q.empty())
q.pop() ;
q.push(u) ;
inq[u] = true ;
d[u] = 0 ;
int tmp ;
Node v ;
while (!q.empty())
{
tmp = q.front() ;
q.pop() ;
inq[tmp] = false ;
int i ;
for(i = 0 ; i < vert[tmp].size() ; i ++)
{
v = vert[tmp][i] ;
if(d[tmp] != INF && d[tmp] + v.dis < d[v.adj])
{
d[v.adj] = d[tmp] + v.dis ;
if(!inq[v.adj])
{
q.push(v.adj) ;
inq[v.adj] = true ;
}
}
}
}
}
void solve()
{
memset(inq , 0 , sizeof(inq)) ;
int i , j ;
for(i = 1 ; i <= n ; i ++)
{
d[i] = INF ;
}
spfa(1) ;
double MAX = d[1] ;
int MAXb = 1 ;
for(i = 1 ; i <= n ; i ++)
{
if(MAX < d[i])
{
MAX = d[i] ;
MAXb = i ;
}
}
int pan = 0 ;
int t1 , t2 ;
for(i = 1 ; i <= n ; i ++) // 枚举每条边 , 更新MAX
{
for(j = 0 ; j < vert[i].size() ; j ++)
{
Node tn = vert[i][j] ;
int ta = tn.adj ;
double td = tn.dis ;
if((d[i] + d[ta] + td) / 2 > MAX ) // 注意:最大距离的求法
{
pan = 1 ;
MAX = (d[i] + d[ta] + td) / 2;
if(i < ta)
{
t1 = i ;
t2 = ta ;
}
else
{
t1 = ta ;
t2 = i ;
}
}
}
}
printf("The last domino falls after %.1f seconds," , MAX) ;
if(pan)
{
printf(" between key dominoes %d and %d.\n" , t1 , t2) ;
}
else
{
printf(" at key domino %d.\n" , MAXb) ;
}
puts("") ;
}
int ca ;
int main()
{
ca = 0 ;
while (scanf("%d%d" , &n , &m) != EOF)
{
if(n == 0 && m == 0)
break ;
init() ;
printf("System #%d\n" , ++ ca) ;
solve() ;
}
return 0 ;
}
												

POJ 1135 Domino Effect (spfa + 枚举)- from lanshui_Yang的更多相关文章

  1. POJ 1135 -- Domino Effect(单源最短路径)

     POJ 1135 -- Domino Effect(单源最短路径) 题目描述: 你知道多米诺骨牌除了用来玩多米诺骨牌游戏外,还有其他用途吗?多米诺骨牌游戏:取一 些多米诺骨牌,竖着排成连续的一行,两 ...

  2. POJ 1135 Domino Effect (Dijkstra 最短路)

    Domino Effect Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9335   Accepted: 2325 Des ...

  3. POJ 1135.Domino Effect Dijkastra算法

    Domino Effect Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10325   Accepted: 2560 De ...

  4. POJ 1135 Domino Effect(Dijkstra)

    点我看题目 题意 : 一个新的多米诺骨牌游戏,就是这个多米诺骨中有许多关键牌,他们之间由一行普通的骨牌相连接,当一张关键牌倒下的时候,连接这个关键牌的每一行都会倒下,当倒下的行到达没有倒下的关键牌时, ...

  5. [POJ] 1135 Domino Effect

    Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12147 Accepted: 3046 Descri ...

  6. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  7. TOJ 1883 Domino Effect

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  8. CF 405B Domino Effect(想法题)

    题目链接: 传送门 Domino Effect time limit per test:1 second     memory limit per test:256 megabytes Descrip ...

  9. UVA211-The Domino Effect(dfs)

    Problem UVA211-The Domino Effect Accept:536  Submit:2504 Time Limit: 3000 mSec  Problem Description ...

随机推荐

  1. knockout简单实用教程2

    在上一篇文章中简单了介绍了下什么ko(后文中都已ko来代替knockout.js)和一些简单的ko的使用方法下面我将介绍在实际的项目中常用到的几种绑定方式和方法. 在开始之前先拿一个dome来回顾下k ...

  2. 定制化Azure站点Java运行环境(3)

    定制化Azure Website提供的默认的Tomcat和JDK环境 在我们之前的测试中,如果你访问你的WEB站点URL时不加任何上下文,实际上你看到的web界面是系统自带的测试页面index.jsp ...

  3. how to remove MouseListener / ActionListener on a JTextField

    I have the following code adding an ActionListener to a JTextField: chatInput.addMouseListener(new j ...

  4. jquery 中 (function( window, undefined ) {})(window)写法详解(转)

    最常见的闭包 (Closure) 范式大家都很熟悉了: 123 (function() {// ...})(); 很简单,大家都在用.但是,我们需要了解更多.首先,闭包是一个匿名函数 (Anonymo ...

  5. 关于SubclassWindow()和SubclassDlgItem

    msdn上的解析 CWnd::SubclassWindowBOOL SubclassWindow( HWND hWnd ); Return Value Nonzero if the function ...

  6. 栈ADT的数组实现

    /* 栈的数组实现声明 */ struct StackRecord; typedef struct StackRecord *Stack; #define MinSstackSize 5 #defin ...

  7. 甲骨文推动Java进军“物联网”

    该公司希望在嵌入式设备开发项目上Java可以取代C     随着周二宣布对嵌入式的Java版本进行升级,甲骨文希望扩展该平台到新一代连接设备,又名物联网.甲骨文还希望,Java可以在一些嵌入式开发项目 ...

  8. paip.svn使用最佳实践

    paip.svn使用最佳实践 作者Attilax ,  EMAIL:1466519819@qq.com  来源:attilax的专栏 地址:http://blog.csdn.net/attilax 1 ...

  9. 基本文件的I/O

    System.IO命名空间包含允许在数据流和文件上进行同步,异步及写入的类型.文件是一些永久存储及具有特定顺序的字节组成的一个有序的,具有名称的集合.与文件有关的概念是目录路径和磁盘存储等.流提供了一 ...

  10. 第一个关于ajax的代码

    昨天由于需要,写了第一个需要ajax的程序,之前只是看过相关介绍,没想到这么有用,记录一下,如有错误,还希望大家提出$(document).ready(function () {//获取url中名字为 ...