POJ 1135 Domino Effect (spfa + 枚举)- from lanshui_Yang
Description
While this is somewhat pointless with only a few dominoes, some people went to the opposite extreme in the early Eighties. Using millions of dominoes of different colors and materials to fill whole halls with elaborate patterns of falling dominoes, they created (short-lived) pieces of art. In these constructions, usually not only one but several rows of dominoes were falling at the same time. As you can imagine, timing is an essential factor here.
It is now your task to write a program that, given such a system of rows formed by dominoes, computes when and where the last domino falls. The system consists of several ``key dominoes'' connected by rows of simple dominoes. When a key domino falls, all rows connected to the domino will also start falling (except for the ones that have already fallen). When the falling rows reach other key dominoes that have not fallen yet, these other key dominoes will fall as well and set off the rows connected to them. Domino rows may start collapsing at either end. It is even possible that a row is collapsing on both ends, in which case the last domino falling in that row is somewhere between its key dominoes. You can assume that rows fall at a uniform rate.
Input
The following m lines each contain three integers a, b, and l, stating that there is a row between key dominoes a and b that takes l seconds to fall down from end to end.
Each system is started by tipping over key domino number 1.
The file ends with an empty system (with n = m = 0), which should not be processed.
Output
Sample Input
2 1
1 2 27
3 3
1 2 5
1 3 5
2 3 5
0 0
Sample Output
System #1
The last domino falls after 27.0 seconds, at key domino 2. System #2
The last domino falls after 7.5 seconds, between key dominoes 2 and 3.
题目大意:给你n个关键的多米诺骨牌,这n个关键的多米诺骨牌由m条由骨牌组成的“路”相连,每条路都有自己的“长度”,当这n个骨牌中的任意一个骨牌 k 倒塌时,与k相连的所有“路”上的骨牌也会随之而倒,让你求把骨牌 1 推到后,所有骨牌中最后一个倒塌的骨牌距离骨牌1的最短距离。
解题思路:题目中保证图是连通的,我们可以先求出骨牌1到其他(n - 1)个关键骨牌的最短距离,得到这些距离中的最大值MAX,然后枚举图中的每条边,再更新MAX,具体详解请看程序:
#include<iostream>
#include<string>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
using namespace std ;
int n , m ;
const int MAXN = 505 ;
struct Node
{
int adj ;
double dis ;
};
const int INF = 0x7fffffff ;
int t ;
vector<Node> vert[MAXN] ;
double d[MAXN] ; // 保存顶点 1 到其他(n - 1)个顶点的最短距离
void clr() // 初始化
{
int i ;
for(i = 0 ; i < MAXN ; i ++)
vert[i].clear() ;
memset(d , 0 ,sizeof(d)) ;
}
void init()
{
clr() ;
int i , j ;
Node tmp ;
for(i = 0 ; i < m ; i ++) // 用邻接表建图
{
int a , b ;
double c ;
scanf("%d%d%lf" , &a , &b , &c) ; tmp.adj = b ;
tmp.dis = c ;
vert[a].push_back(tmp) ; tmp.adj = a ;
tmp.dis = c ;
vert[b].push_back(tmp) ;
}
}
queue<int> q ;
bool inq[MAXN] ;
void spfa(int u) // 求最短路
{
while (!q.empty())
q.pop() ;
q.push(u) ;
inq[u] = true ;
d[u] = 0 ;
int tmp ;
Node v ;
while (!q.empty())
{
tmp = q.front() ;
q.pop() ;
inq[tmp] = false ;
int i ;
for(i = 0 ; i < vert[tmp].size() ; i ++)
{
v = vert[tmp][i] ;
if(d[tmp] != INF && d[tmp] + v.dis < d[v.adj])
{
d[v.adj] = d[tmp] + v.dis ;
if(!inq[v.adj])
{
q.push(v.adj) ;
inq[v.adj] = true ;
}
}
}
}
}
void solve()
{
memset(inq , 0 , sizeof(inq)) ;
int i , j ;
for(i = 1 ; i <= n ; i ++)
{
d[i] = INF ;
}
spfa(1) ;
double MAX = d[1] ;
int MAXb = 1 ;
for(i = 1 ; i <= n ; i ++)
{
if(MAX < d[i])
{
MAX = d[i] ;
MAXb = i ;
}
}
int pan = 0 ;
int t1 , t2 ;
for(i = 1 ; i <= n ; i ++) // 枚举每条边 , 更新MAX
{
for(j = 0 ; j < vert[i].size() ; j ++)
{
Node tn = vert[i][j] ;
int ta = tn.adj ;
double td = tn.dis ;
if((d[i] + d[ta] + td) / 2 > MAX ) // 注意:最大距离的求法
{
pan = 1 ;
MAX = (d[i] + d[ta] + td) / 2;
if(i < ta)
{
t1 = i ;
t2 = ta ;
}
else
{
t1 = ta ;
t2 = i ;
}
}
}
}
printf("The last domino falls after %.1f seconds," , MAX) ;
if(pan)
{
printf(" between key dominoes %d and %d.\n" , t1 , t2) ;
}
else
{
printf(" at key domino %d.\n" , MAXb) ;
}
puts("") ;
}
int ca ;
int main()
{
ca = 0 ;
while (scanf("%d%d" , &n , &m) != EOF)
{
if(n == 0 && m == 0)
break ;
init() ;
printf("System #%d\n" , ++ ca) ;
solve() ;
}
return 0 ;
}
POJ 1135 Domino Effect (spfa + 枚举)- from lanshui_Yang的更多相关文章
- POJ 1135 -- Domino Effect(单源最短路径)
POJ 1135 -- Domino Effect(单源最短路径) 题目描述: 你知道多米诺骨牌除了用来玩多米诺骨牌游戏外,还有其他用途吗?多米诺骨牌游戏:取一 些多米诺骨牌,竖着排成连续的一行,两 ...
- POJ 1135 Domino Effect (Dijkstra 最短路)
Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9335 Accepted: 2325 Des ...
- POJ 1135.Domino Effect Dijkastra算法
Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10325 Accepted: 2560 De ...
- POJ 1135 Domino Effect(Dijkstra)
点我看题目 题意 : 一个新的多米诺骨牌游戏,就是这个多米诺骨中有许多关键牌,他们之间由一行普通的骨牌相连接,当一张关键牌倒下的时候,连接这个关键牌的每一行都会倒下,当倒下的行到达没有倒下的关键牌时, ...
- [POJ] 1135 Domino Effect
Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12147 Accepted: 3046 Descri ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
- TOJ 1883 Domino Effect
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
- CF 405B Domino Effect(想法题)
题目链接: 传送门 Domino Effect time limit per test:1 second memory limit per test:256 megabytes Descrip ...
- UVA211-The Domino Effect(dfs)
Problem UVA211-The Domino Effect Accept:536 Submit:2504 Time Limit: 3000 mSec Problem Description ...
随机推荐
- C++利用指针突破私有成员访问限制
C++ 面向对象的一大特性就是封装,使用不同的访问控制符来控制外接对其的访问权限.比如: 1 class A 2 { 3 public: 4 A(): i(10){} 5 void print(){ ...
- mysql 分区 按 PARTITION BY RANGE (TO_DAYS(startTime))
to_days() Given a date date, returns a day number (the number of days since year 0). 给定一个date 日期,返回天 ...
- zookeeper 各节点数据保证是弱一致性
一致性保证: ZooKeeeper 是一个高性能的,可扩展的服务.不管是读和写操作是被设计成快速,虽然读比写快. 这样做的原因是在读的情况下,Zookeeper 可以提供旧的数据, 反过来又是由于Zo ...
- C语言的本质(27)——C语言与汇编之计算机结构
现代计算机都是基于冯·诺依曼或哈佛体系结构的,不管是嵌入式系统.个人电脑还是服务器.这种两种体系结构的主要特点是:CPU和内存是计算机的两个主要组成部分,内存中保存着数据和指令,CPU从内存中取指令执 ...
- 【BZOJ 1088 扫雷Mine】模拟
http://www.lydsy.com/JudgeOnline/problem.php?id=1088 2*N的扫雷棋盘,第二列的值a[i]记录第 i 个格子和它8连通的格子里面雷的数目. 第一列的 ...
- 【男性身材计算】胸围=身高*0.48(如:身高175cm的标准胸围=175cm*0.61=84cm);腰围=身高*0.47(如:身高175c… - 李峥 - 价值中国网
[男性身材计算]胸围=身高*0.48(如:身高175cm的标准胸围=175cm*0.61=84cm):腰围=身高*0.47(如:身高175c- - 李峥 - 价值中国网 李峥:[男性身材计算]胸围=身 ...
- systemctl 命令完全指南
http://www.linuxidc.com/Linux/2015-07/120833.htm Systemctl是一个systemd工具,主要负责控制systemd系统和服务管理器. System ...
- hdu - 4709 - Herding
题意:给出N个点的坐标,从中取些点来组成一个多边形,求这个多边形的最小面积,组不成多边形的输出"Impossible"(测试组数 T <= 25, 1 <= N < ...
- Java程序员应该知道的10个面向对象理论
英文原文:10-object-oriented-design-principles 面向对象理论是面向对象编程的核心,但是我发现大部分 Java 程序员热衷于像单例模式.装饰者模式或观察者模式这样的设 ...
- codevs1127
学校里有一个水房,水房里一共装有m 个龙头可供同学们打开水,每个龙头每秒钟的供水量相等,均为1. 现在有n 名同学准备接水,他们的初始接水顺序已经确定.将这些同学按接水顺序从1到n 编号,i 号同学的 ...