这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法.....

求出Height数组后, 我们枚举每一位当做子串的开头.

如上图(x, y是height值), Heights数组中相邻的3个后缀, 假如我们枚举s2的第一个字符为开头, 那我们发现, 长度至少为len = max(x, y)+1, 才能满足题意(仅出现一次). 这个很好脑补...因为s2和其他串的LCP是RMQ, 肯定会<=LCP(s1,s2)或<=LCP(s2,s3). 然后就用len去更新s2中前len个字符的答案, 线段树维护. 然后对于长度lth>len的也肯定是合法的, 他们对s2的前lth个字符都有贡献...但是事实上lth对前lth-1个字符c的贡献是没有卵用的....(因为小于同样字符开头的以c结尾的串的贡献或者是len的贡献), 所以lth>=len对第lth个字符有贡献.

容易看出这样的贡献是成等差数列的。。。。线段树维护就OK了.

时间复杂度O(N log N), 空间复杂度O(N)

-------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int maxn = 100009;
 
char S[maxn];
int N, L, R, Val;
int Height[maxn], Rank[maxn], Sa[maxn], cnt[maxn];
 
inline void Min(int &x, int t) {
if(t < x) x = t;
}
inline void Max(int &x, int t) {
if(t > x) x = t;
}
 
void BuildSA(int m) {
int *x = Height, *y = Rank;
for(int i = 0; i < m; i++) cnt[i] = 0;
for(int i = 0; i < N; i++) cnt[x[i] = S[i]]++;
for(int i = 1; i < m; i++) cnt[i] += cnt[i - 1];
for(int i = N; i--; ) Sa[--cnt[x[i]]] = i;
for(int k = 1, p = 0; k <= N; k <<= 1, p = 0) {
for(int i = N - k; i < N; i++) y[p++] = i;
for(int i = 0; i < N; i++)
if(Sa[i] >= k) y[p++] = Sa[i] - k;
for(int i = 0; i < m; i++) cnt[i] = 0;
for(int i = 0; i < N; i++) cnt[x[y[i]]]++;
for(int i = 1; i < m; i++) cnt[i] += cnt[i - 1];
for(int i = N; i--; ) Sa[--cnt[x[y[i]]]] = y[i];
swap(x, y);
p = (x[Sa[0]] = 0) + 1;
for(int i = 1; i < N; i++) {
if(y[Sa[i]] != y[Sa[i - 1]] || y[Sa[i] + k] != y[Sa[i - 1] + k]) p++;
x[Sa[i]] = p - 1;
}
if((m = p) >= N) break;
}
for(int i = 0; i < N; i++) Rank[Sa[i]] = i;
Height[0] = 0;
for(int i = 0, h = 0; i < N; i++) if(Rank[i]) {
if(h) h--;
while(S[i + h] == S[Sa[Rank[i] - 1] + h]) h++;
Height[Rank[i]] = h;
}
}
 
struct Node {
Node *lc, *rc;
int n, d;
inline void pd(int len) {
if(n != maxn) {
Min(lc->n, n);
Min(rc->n, n);
}
if(d != maxn) {
Min(lc->d, d);
Min(rc->d, d + ((len + 1) >> 1));
}
}
} pool[maxn << 1], *pt = pool, *Root;
 
void Build(Node* t, int l, int r) {
t->n = t->d = maxn;
if(l != r) {
int m = (l + r) >> 1;
Build(t->lc = pt++, l, m);
Build(t->rc = pt++, m + 1, r);
}
}
 
void Modify(Node* t, int l, int r) {
if(L <= l && r <= R) {
Min(t->n, Val);
} else {
int m = (l + r) >> 1;
if(L <= m) Modify(t->lc, l, m);
if(m < R) Modify(t->rc, m + 1, r);
}
}
 
void Change(Node* t, int l, int r) {
if(L <= l && r <= R) {
Min(t->d, Val + l - L);
} else {
int m = (l + r) >> 1;
if(L <= m) Change(t->lc, l, m);
if(m < R) Change(t->rc, m + 1, r);
}
}
 
void DFS(Node* t, int l, int r) {
if(l != r) {
int m = (l + r) >> 1;
t->pd(r - l + 1);
DFS(t->lc, l, m);
DFS(t->rc, m + 1, r);
} else 
printf("%d\n", min(t->d, t->n));
}
 
int main() {
scanf("%s", S);
N = strlen(S);
S[N++] = '$';
BuildSA('z' + 1);
int n = N - 1;
Build(Root = pt++, 1, n);
Height[N] = 0;
for(int i = 1; i < N; i++) {
Val = max(Height[i], Height[i + 1]) + 1;
if(Val > 1) {
if(Sa[i] + Val > n) continue;
L = Sa[i] + 1, R = L + Val - 2;
Modify(Root, 1, n);
}
L = Sa[i] + Val, R = n;
if(L > R) continue;
Change(Root, 1, n);
}
DFS(Root, 1, n);
return 0;
}

-------------------------------------------------------------------------

1396: 识别子串

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 201  Solved: 119
[Submit][Status][Discuss]

Description

Input

一行,一个由小写字母组成的字符串S,长度不超过10^5

Output

L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长.

Sample Input

agoodcookcooksgoodfood

Sample Output

1
2
3
3
2
2
3
3
2
2
3
3
2
1
2
3
3
2
1
2
3
4

HINT

Source

BZOJ 1396: 识别子串( 后缀数组 + 线段树 )的更多相关文章

  1. BZOJ 1396 识别子串 (后缀自动机+线段树)

    题目大意: 给你一个字符串S,求关于每个位置x的识别串T的最短长度,T必须满足覆盖x,且T在S中仅出现一次 神题 以节点x为结尾的识别串,必须满足它在$parent$树的子树中只有一个$endpos$ ...

  2. bzoj 1396: 识别子串【SAM+线段树】

    建个SAM,符合要求的串显然是|right|==1的节点多代表的串,设si[i]为right集合大小,p[i]为right最大的r点,这些都可以建出SAM后再parent树上求得 然后对弈si[i]= ...

  3. BZOJ1396: 识别子串(后缀自动机 线段树)

    题意 题目链接 Sol 后缀自动机+线段树 还是考虑通过每个前缀的后缀更新答案,首先出现次数只有一次,说明只有\(right\)集合大小为\(1\)的状态能对答案产生影响 设其结束位置为\(t\),代 ...

  4. bzoj 1396: 识别子串 && bzoj 2865: 字符串识别【后缀数组+线段树】

    根据height数组的定义,和当前后缀串i最长的相同串的长度就是max(height[i],height[i+1]),这个后缀贡献的最短不同串长度就是len=max(height[i],height[ ...

  5. BZOJ.1396.识别子串(后缀自动机/后缀数组 线段树)

    题目链接 SAM:能成为识别子串的只有那些|right|=1的节点代表的串. 设这个节点对应原串的右端点为r[i],则如果|right[i]|=1,即\(s[\ [r_i-len_i+1,r_i-le ...

  6. bzoj 1396 识别子串 后缀树+线段树

    题目大意 给定一个长度\(\le100000\)的字符串 求每一个位置的最短识别子串 对于位置\(x\),能识别子串\(s[i...j]\)的条件是 1.\(i\le x \le j\) 2.\(s[ ...

  7. BZOJ 1396&&2865 识别子串[后缀自动机 线段树]

    Description 在这个问题中,给定一个字符串S,与一个整数K,定义S的子串T=S(i, j)是关于第K位的识别子串,满足以下两个条件: 1.i≤K≤j. 2.子串T只在S中出现过一次. 例如, ...

  8. BZOJ 1396 识别子串 (后缀自动机、线段树)

    手动博客搬家: 本文发表于20181221 00:58:26, 原地址https://blog.csdn.net/suncongbo/article/details/85150962 嗯,以后博客内容 ...

  9. BZOJ 2865 字符串识别(后缀数组+线段树)

    很容易想到只考虑后缀长度必须为\(max(height[rk[i]],height[rk[i]+1])+1\)(即\([i,i+x-1]\)代表的串只出现过一次)然后我正着做一遍反着做一遍,再取一个\ ...

随机推荐

  1. HDOJ3374 String Problem 【KMP】+【最小表示法】

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  2. 【最小费用最大流】【HDU1533】【Going Home】

    题意 给你一个类似这样的图 ...H.... ...H.... ...H.... mmmHmmmm ...H.... ...H.... ...H.... 问所有H移动到所有m上花费最少的步数 以所有H ...

  3. VS单元测试入门实践教程

    摘要:本教程不会介绍单元测试的基本理论知识,也不会和大家讨论在实际项目中是否需要写单元测试代码的问题.但是如果你此时想使用VS中的单元测试的工具来测试某个方法是否正确,可你又从来没真正实践过,那么本教 ...

  4. Android 获取 root权限

    在进行android 开发的时候,经常用真机进行调试,有时候需要把手机中的sqlite数据复制出来.这时候就需要获取手机的root权限.通过 adb shell 命令可以获取权限. 1. 运行cmd ...

  5. Redis的安装和配置

    在网站redis.io复制下载链接 wget http://download.redis.io/releases/redis-3.0.5.tar.gz tar zxvf redis-3.0.5.tar ...

  6. DWZ 框架remote 验证字段唯一性方法提交后台,如果是中文会显示成乱码问题

    关于jquery  remote 验证字段唯一性方法提交后台,如果是中文会显示成乱码问题.可以直接修改tomcat 配置文件server.xml  设置 URIEncoding=utf-8属性,将ge ...

  7. Hive进阶(下)

    Hive进阶(下) Hive进阶(下) Hive的表连接 等值连接 查询员工信息:员工号.姓名.月薪.部门名称 1.select e.empno,e.ename,e.sal,d.dname2.from ...

  8. Excel转JSON-简单-暴力-迅速

    一直在做一个关于网上选课的系统,选用了时下比较流行的node.js.今天在想怎么把学生或者老师的信息导入进去,涉及数量比较多一点,我手边又正好有一部分excel的表格.就想把excel转成json然后 ...

  9. Python成长之路第一篇(3)_初识字典

    经过上章的学习我们已经了解到了列表可以通过索引来获取对应的值,在本章我们将学到通过名字来索引数据,这种结构的类型称之为映射(maooing),在Python中字典是唯一内建的映射类型,其中的值我们称之 ...

  10. switch函数——Gevent源码分析

    在gevent的源码中,经常能看到switch函数.而不同的类中的switch函数有不同的用法 1. greenlet的switch函数 这里面的greenlet是greenlet库中的greenle ...