这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法.....

求出Height数组后, 我们枚举每一位当做子串的开头.

如上图(x, y是height值), Heights数组中相邻的3个后缀, 假如我们枚举s2的第一个字符为开头, 那我们发现, 长度至少为len = max(x, y)+1, 才能满足题意(仅出现一次). 这个很好脑补...因为s2和其他串的LCP是RMQ, 肯定会<=LCP(s1,s2)或<=LCP(s2,s3). 然后就用len去更新s2中前len个字符的答案, 线段树维护. 然后对于长度lth>len的也肯定是合法的, 他们对s2的前lth个字符都有贡献...但是事实上lth对前lth-1个字符c的贡献是没有卵用的....(因为小于同样字符开头的以c结尾的串的贡献或者是len的贡献), 所以lth>=len对第lth个字符有贡献.

容易看出这样的贡献是成等差数列的。。。。线段树维护就OK了.

时间复杂度O(N log N), 空间复杂度O(N)

-------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int maxn = 100009;
 
char S[maxn];
int N, L, R, Val;
int Height[maxn], Rank[maxn], Sa[maxn], cnt[maxn];
 
inline void Min(int &x, int t) {
if(t < x) x = t;
}
inline void Max(int &x, int t) {
if(t > x) x = t;
}
 
void BuildSA(int m) {
int *x = Height, *y = Rank;
for(int i = 0; i < m; i++) cnt[i] = 0;
for(int i = 0; i < N; i++) cnt[x[i] = S[i]]++;
for(int i = 1; i < m; i++) cnt[i] += cnt[i - 1];
for(int i = N; i--; ) Sa[--cnt[x[i]]] = i;
for(int k = 1, p = 0; k <= N; k <<= 1, p = 0) {
for(int i = N - k; i < N; i++) y[p++] = i;
for(int i = 0; i < N; i++)
if(Sa[i] >= k) y[p++] = Sa[i] - k;
for(int i = 0; i < m; i++) cnt[i] = 0;
for(int i = 0; i < N; i++) cnt[x[y[i]]]++;
for(int i = 1; i < m; i++) cnt[i] += cnt[i - 1];
for(int i = N; i--; ) Sa[--cnt[x[y[i]]]] = y[i];
swap(x, y);
p = (x[Sa[0]] = 0) + 1;
for(int i = 1; i < N; i++) {
if(y[Sa[i]] != y[Sa[i - 1]] || y[Sa[i] + k] != y[Sa[i - 1] + k]) p++;
x[Sa[i]] = p - 1;
}
if((m = p) >= N) break;
}
for(int i = 0; i < N; i++) Rank[Sa[i]] = i;
Height[0] = 0;
for(int i = 0, h = 0; i < N; i++) if(Rank[i]) {
if(h) h--;
while(S[i + h] == S[Sa[Rank[i] - 1] + h]) h++;
Height[Rank[i]] = h;
}
}
 
struct Node {
Node *lc, *rc;
int n, d;
inline void pd(int len) {
if(n != maxn) {
Min(lc->n, n);
Min(rc->n, n);
}
if(d != maxn) {
Min(lc->d, d);
Min(rc->d, d + ((len + 1) >> 1));
}
}
} pool[maxn << 1], *pt = pool, *Root;
 
void Build(Node* t, int l, int r) {
t->n = t->d = maxn;
if(l != r) {
int m = (l + r) >> 1;
Build(t->lc = pt++, l, m);
Build(t->rc = pt++, m + 1, r);
}
}
 
void Modify(Node* t, int l, int r) {
if(L <= l && r <= R) {
Min(t->n, Val);
} else {
int m = (l + r) >> 1;
if(L <= m) Modify(t->lc, l, m);
if(m < R) Modify(t->rc, m + 1, r);
}
}
 
void Change(Node* t, int l, int r) {
if(L <= l && r <= R) {
Min(t->d, Val + l - L);
} else {
int m = (l + r) >> 1;
if(L <= m) Change(t->lc, l, m);
if(m < R) Change(t->rc, m + 1, r);
}
}
 
void DFS(Node* t, int l, int r) {
if(l != r) {
int m = (l + r) >> 1;
t->pd(r - l + 1);
DFS(t->lc, l, m);
DFS(t->rc, m + 1, r);
} else 
printf("%d\n", min(t->d, t->n));
}
 
int main() {
scanf("%s", S);
N = strlen(S);
S[N++] = '$';
BuildSA('z' + 1);
int n = N - 1;
Build(Root = pt++, 1, n);
Height[N] = 0;
for(int i = 1; i < N; i++) {
Val = max(Height[i], Height[i + 1]) + 1;
if(Val > 1) {
if(Sa[i] + Val > n) continue;
L = Sa[i] + 1, R = L + Val - 2;
Modify(Root, 1, n);
}
L = Sa[i] + Val, R = n;
if(L > R) continue;
Change(Root, 1, n);
}
DFS(Root, 1, n);
return 0;
}

-------------------------------------------------------------------------

1396: 识别子串

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 201  Solved: 119
[Submit][Status][Discuss]

Description

Input

一行,一个由小写字母组成的字符串S,长度不超过10^5

Output

L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长.

Sample Input

agoodcookcooksgoodfood

Sample Output

1
2
3
3
2
2
3
3
2
2
3
3
2
1
2
3
3
2
1
2
3
4

HINT

Source

BZOJ 1396: 识别子串( 后缀数组 + 线段树 )的更多相关文章

  1. BZOJ 1396 识别子串 (后缀自动机+线段树)

    题目大意: 给你一个字符串S,求关于每个位置x的识别串T的最短长度,T必须满足覆盖x,且T在S中仅出现一次 神题 以节点x为结尾的识别串,必须满足它在$parent$树的子树中只有一个$endpos$ ...

  2. bzoj 1396: 识别子串【SAM+线段树】

    建个SAM,符合要求的串显然是|right|==1的节点多代表的串,设si[i]为right集合大小,p[i]为right最大的r点,这些都可以建出SAM后再parent树上求得 然后对弈si[i]= ...

  3. BZOJ1396: 识别子串(后缀自动机 线段树)

    题意 题目链接 Sol 后缀自动机+线段树 还是考虑通过每个前缀的后缀更新答案,首先出现次数只有一次,说明只有\(right\)集合大小为\(1\)的状态能对答案产生影响 设其结束位置为\(t\),代 ...

  4. bzoj 1396: 识别子串 && bzoj 2865: 字符串识别【后缀数组+线段树】

    根据height数组的定义,和当前后缀串i最长的相同串的长度就是max(height[i],height[i+1]),这个后缀贡献的最短不同串长度就是len=max(height[i],height[ ...

  5. BZOJ.1396.识别子串(后缀自动机/后缀数组 线段树)

    题目链接 SAM:能成为识别子串的只有那些|right|=1的节点代表的串. 设这个节点对应原串的右端点为r[i],则如果|right[i]|=1,即\(s[\ [r_i-len_i+1,r_i-le ...

  6. bzoj 1396 识别子串 后缀树+线段树

    题目大意 给定一个长度\(\le100000\)的字符串 求每一个位置的最短识别子串 对于位置\(x\),能识别子串\(s[i...j]\)的条件是 1.\(i\le x \le j\) 2.\(s[ ...

  7. BZOJ 1396&&2865 识别子串[后缀自动机 线段树]

    Description 在这个问题中,给定一个字符串S,与一个整数K,定义S的子串T=S(i, j)是关于第K位的识别子串,满足以下两个条件: 1.i≤K≤j. 2.子串T只在S中出现过一次. 例如, ...

  8. BZOJ 1396 识别子串 (后缀自动机、线段树)

    手动博客搬家: 本文发表于20181221 00:58:26, 原地址https://blog.csdn.net/suncongbo/article/details/85150962 嗯,以后博客内容 ...

  9. BZOJ 2865 字符串识别(后缀数组+线段树)

    很容易想到只考虑后缀长度必须为\(max(height[rk[i]],height[rk[i]+1])+1\)(即\([i,i+x-1]\)代表的串只出现过一次)然后我正着做一遍反着做一遍,再取一个\ ...

随机推荐

  1. QCustomPlot使用手冊(三)

    一.改变范围 QCustomPlot *customplot; customplot->setInteraction(QCP::iRangeDrag,true); 使控件能够拖拉. custom ...

  2. 【Quick-COCOS2D-X 3.3 怎样绑定自己定义类至Lua之四】使用绑定C++至Lua的自己定义类

    续[Quick-COCOS2D-X 3.3 怎样绑定自己定义类至Lua之三]动手绑定自己定义类至Lua 之后.我们已经完毕了自己定义类至Lua的绑定.在接下来的环节,我们将使用它. 首先,我们须要确定 ...

  3. google 推荐 android 像素统一使用dip,字体统一使用sp

    像素统一使用dip,字体统一使用sp

  4. 九度OJ 题目1371:最小的K个数

    题目描述: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 输入: 每个测试案例包括2行: 第一行为2个整数n,k(1< ...

  5. 【概率DP入门】

    http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710606.html 有关概率和期望问题的研究 摘要 在各类信息学竞赛中(尤其是ACM竞赛中) ...

  6. JavaScript学习笔记——简单无缝循环滚动展示图片的实现

    今天做了一个简单的无缝循环滚动的实例,这种实例在网页中其实还挺常见的,下面分享一下我的学习收获. 首先,无缝滚动的第一个重点就是——动.关于怎么让页面的元素节点动起来,这就得学明白关于JavaScri ...

  7. iOS分类

    ios中的分类其实就是把两个类用两个或多个文件写的,,在平时的开发中我们会发现有的时候我们想要一个类多个什么功能  但是已经定义好的类中没有,,我们又不想更改我们的程序  那么现在的这种情况下我就可以 ...

  8. C# 3循环 for语句应用

    class 做图形 { static void Main(string[] args) { //打印下列图形 //★★★★★ //★★★★★ //★★★★★ //★★★★★ //★★★★★ // 图( ...

  9. C# 运算符 if

    运算符: 一.算术运算符: + - * / % ——取余运算 取余运算的应用场景: 1.奇偶数的区分. 2.把数变化到某个范围之内.——彩票生成. 3.判断能否整除.——闰年.平年. int a = ...

  10. Blend制作TextButton和ImageButton

    最近看了几个高人做的软件界面(http://kaodigua.net/),羡慕嫉妒到不行,决定学习一下Blend的用法,马上觉得WPF开发的界面设计就应该放在Blend里面做.学习了两位大神的博客(h ...