UVA 10652 Board Wrapping(凸包)
The small sawmill in Mission, British Columbia, has
developed a brand new way of packaging boards for
drying. By fixating the boards in special moulds, the
board can dry efficiently in a drying room.
Space is an issue though. The boards cannot be
too close, because then the drying will be too slow.
On the other hand, one wants to use the drying room
efficiently.
Looking at it from a 2-D perspective, your task is
to calculate the fraction between the space occupied by
the boards to the total space occupied by the mould.
Now, the mould is surrounded by an aluminium frame
of negligible thickness, following the hull of the boards’
corners tightly. The space occupied by the mould
would thus be the interior of the frame.
Input
On the first line of input there is one integer, N ≤ 50,
giving the number of test cases (moulds) in the input. After this line, N test cases follow. Each test case
starts with a line containing one integer n, 1 < n ≤ 600, which is the number of boards in the mould.
Then n lines follow, each with five floating point numbers x, y, w, h, ϕ where 0 ≤ x, y, w, h ≤ 10000
and −90◦ < ϕ ≤ 90◦
. The x and y are the coordinates of the center of the board and w and h are the
width and height of the board, respectively. ϕ is the angle between the height axis of the board to the
y-axis in degrees, positive clockwise. That is, if ϕ = 0, the projection of the board on the x-axis would
be w. Of course, the boards cannot intersect.
Output
For every test case, output one line containing the fraction of the space occupied by the boards to the
total space in percent. Your output should have one decimal digit and be followed by a space and a
percent sign (‘%’).
Note: The Sample Input and Sample Output corresponds to the given picture
Sample Input
1
4
4 7.5 6 3 0
8 11.5 6 3 0
9.5 6 6 3 90
4.5 3 4.4721 2.2361 26.565
Sample Output
64.3 %
题解:求矩形面积与凸包面积的比例,顺时针一定要是负....错了半天。。。还有给的ang要转化为rad
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const double Pi=acos(-1.0);
struct Point{
double x,y;
Point(double x=,double y=):x(x),y(y){}
};
typedef Point Vector;
bool operator < (Point a,Point b){return a.x<b.x||(a.x==b.x&&a.y<b.y);}
Vector operator - (Point a,Point b){return Vector(a.x-b.x,a.y-b.y);}
double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Length(Vector a){return sqrt(Dot(a,a));}
double Angle(Vector a,Vector b){return acos(Dot(a,b)/Length(a)/Length(b));}
Vector Rotate(Vector a,double rad){return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
Point operator + (Point a,Vector b){return Point(a.x+b.x,a.y+b.y);}
Point getdot(Point a,Vector b,double ang){return a+Rotate(b,ang);}
double getrad(double ang){return Pi*(ang/);}
Point ans[],at[];
int nu;
double polygonArea(){
int k=;
for(int i=;i<nu;i++){
while(k>&&Cross(ans[k-]-ans[k-],at[i]-ans[k-])<=)k--;
ans[k++]=at[i];
}
int p=k;
for(int i=nu-;i>=;i--){
while(k>p&&Cross(ans[k-]-ans[k-],at[i]-ans[k-])<=)k--;
ans[k++]=at[i];
}
double x=;
k--;
if(k<)return ;
for(int i=;i<k-;i++)x+=Cross(ans[i]-ans[],ans[i+]-ans[]);
return x/;
}
int main(){
int T,n;
double x,y,w,h,ang;
scanf("%d",&T);
while(T--){
double area1=,area2=;
nu=;
scanf("%d",&n);
while(n--){
scanf("%lf%lf%lf%lf%lf",&x,&y,&w,&h,&ang);
area2+=w*h;
Point a;
ang=-getrad(ang);//因为是顺时针旋转的,所以要是负的。。。。。
at[nu++]=getdot(Point(x,y),Vector(w/,h/),ang);
at[nu++]=getdot(Point(x,y),Vector(-w/,h/),ang);
at[nu++]=getdot(Point(x,y),Vector(w/,-h/),ang);
at[nu++]=getdot(Point(x,y),Vector(-w/,-h/),ang);
}
sort(at,at+nu);
area1=polygonArea();
// printf("%lf %lf\n",area1,area2);
printf("%.1lf %%\n",*area2/area1);
}
return ;
}
UVA 10652 Board Wrapping(凸包)的更多相关文章
- uva 10652 Board Wrapping (计算几何-凸包)
Problem B Board Wrapping Input: standard input Output: standard output Time Limit: 2 seconds The sma ...
- UVA 10652 Board Wrapping 计算几何
多边形凸包.. .. Board Wrapping Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu ...
- 简单几何(向量旋转+凸包+多边形面积) UVA 10652 Board Wrapping
题目传送门 题意:告诉若干个矩形的信息,问他们在凸多边形中所占的面积比例 分析:训练指南P272,矩形面积长*宽,只要计算出所有的点,用凸包后再求多边形面积.已知矩形的中心,向量在原点参考点再旋转,角 ...
- UVA 10652 Board Wrapping(凸包)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32286 [思路] 凸包 根据角度与中心点求出长方形所有点来,然后就 ...
- Uva 10652 Board Wrapping(计算几何之凸包+点旋转)
题目大意:给出平面上许多矩形的中心点和倾斜角度,计算这些矩形面积占这个矩形点形成的最大凸包的面积比. 算法:GRAHAM,ANDREW. 题目非常的简单,就是裸的凸包 + 点旋转.这题自己不会的地方就 ...
- UVA 10652 Board Wrapping(二维凸包)
传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...
- uva 10652 Board Wrapping
主要是凸包的应用: #include <cstdio> #include <cmath> #include <cstring> #include <algor ...
- ●UVA 10652 Board Wrapping
题链: https://vjudge.net/problem/UVA-10652 题解: 计算几何,Andrew求凸包, 裸题...(数组开小了,还整了半天...) 代码: #include<c ...
- uva 10625 Board Wrapping
https://vjudge.net/problem/UVA-10652 给出n个长方形,用一个面积尽量小的凸多边形把他们围起来 求木板占包装面积的百分比 输入给出长方形的中心坐标,长,宽,以及长方形 ...
随机推荐
- 【Tomcat】使用Eclipse运行Tomcat7源码
1.搭建开发环境 a.下载好tomcat7源码包 b.安装好jdk7,及设置好环境变量 c.安装好ant,及设置好环境变量,用于预编译tocmat源码. d.以上步骤准备好我们就可以开始进入源码的预编 ...
- IOS使用pch预编译文件
首先新建一个pch文件,然后要修改这个项目的Build Setting中的Prefix Header 修改为 $(SRCROOT)/项目名称/预编译文件名: 一般pch文件的用处: 1.导入框架,如: ...
- Optimistic and Pessimistic locking
悲观锁 悲观锁是指假设并发更新冲突会发生,所以不管冲突是否真的发生,都会使用锁机制. 悲观锁会完成以下功能:锁住读取的记录,防止其它事务读取和更新这些记录.其它事务会一直阻塞,直到这个事务结束. 悲观 ...
- LintCode-子数组之和
题目描述: 给定一个整数数组,找到和为零的子数组.你的代码应该返回满足要求的子数组的起始位置和结束位置 样例 给出 [-3, 1, 2, -3, 4],返回[0, 2] 或者 [1, 3]. publ ...
- Android Studio ADB响应失败解决方法
当启动Android Studio时,如果弹出 adb not responding. you can wait more,or kill "adb.exe" process ma ...
- 【opengl】OpenGL中三维物体显示在二维屏幕上显示的变换过程
转自:http://blog.sina.com.cn/s/blog_957b9fdb0100zesv.html 为了说明在三维物体到二维图象之间,需要经过什么样的变换,我们引入了相机(Camera)模 ...
- Android开发小记
一,下载解压adt-bundle,直接可以用来开发了二,新建android项目时不勾选创建activity,来看看如何手动创建activity1,在空项目添加class文件,选择超类为activity ...
- golang语法学习(一):变量,常量以及数据类型
学习一门新的语言肯定是要从他的主要的语法開始,语法构成了整个程序设计的基础,从语法中我们也能够看到这门语言的一些特性.可是话说回来.语法这东西,不同的语言大同小异,所以这也对语法的记忆造成了一定的难度 ...
- 获取WebView里的网页文本内容
获取WebView里的网页文本内容,能够採用例如以下方法: public class ComJSInterface { public void loadHtmlContent(String conte ...
- JavaScript中的字符串
JavaScript字符串是JavaScript最重要的部分,可能比任何其他的数据类型都更多的用到. 所有的JavaScript对象共享的方法之一就是toString(). 字符串对象叫做String ...