DAG上的动态规划
嵌套矩形问题(最长路及其字典序)
有n个举行,选出尽量多的矩阵排成一排,使得除了最后一个之外,每一个矩形可以嵌套在下一个矩形内,并且打印
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <stack>
#include <cctype>
#include <string>
#include <queue>
#include <map>
#include <set> using namespace std; const int INF = 0xffffff;
const double esp = 10e-;
const double Pi = * atan(1.0);
const int maxn = + ;
const long long mod = ;
const int dr[] = {,,-,,-,,-,};
const int dc[] = {,,,-,,-,-,};
typedef long long LL; LL gac(LL a,LL b){
return b?gac(b,a%b):a;
}
int n;
bool graph[maxn][maxn];
struct G{
int a,b;
};
G g[maxn];
int d[maxn][maxn];
bool judge(int x,int y){
if(g[x].a < g[y].a && g[x].b < g[y].b)
return ;
if(g[x].a < g[y].b && g[x].b < g[y].a)
return ;
return ;
}
int dp(int i,int tt){
if(d[tt][i] > )
return d[tt][i];
d[tt][i] = ;
for(int j = ;j <= n;j++){
if(graph[i][j]){
d[tt][i] = max(d[tt][i],dp(j,tt)+);
}
}
return d[tt][i];
}
void print_ans(int i,int tt){
printf("%d ",i);
for(int j = ;j <= n;j++){
if(graph[i][j] && d[tt][i] == d[tt][j] + ){
print_ans(j,tt);
break;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("input.in","r",stdin);
// freopen("output.txt","w",stdout);
#endif
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i = ;i <= n;i++){
getchar();
char ch;
scanf("%c%d%d",&ch,&g[i].a,&g[i].b);
//int fin = -1;
for(int j = ;j < i;j++){
if(judge(i,j)){
graph[i][j] = ;
}
if(judge(j,i)){
graph[j][i] = ;
}
}
}
int ans = -;
int m;
memset(d,,sizeof(d));
for(int i = ;i <= n;i++){
int tmp = dp(i,i);
if(tmp > ans){
m = i;
ans = tmp;
}
}
printf("%d\n",ans);
print_ans(m,m);
}
return ;
}
硬币问题
有n种硬币,面值分别为v1,v2,v3……给定非负整数s问选用多少个硬币使面值恰好等于s?求出硬币数目最大值和最小值……
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <stack>
#include <cctype>
#include <string>
#include <queue>
#include <map>
#include <set> using namespace std; const int INF = 0xffffff;
const double esp = 10e-;
const double Pi = * atan(1.0);
const int maxn = + ;
const long long mod = ;
const int dr[] = {,,-,,-,,-,};
const int dc[] = {,,,-,,-,-,};
typedef long long LL; LL gac(LL a,LL b){
return b?gac(b,a%b):a;
}
int V[maxn];
int minv[maxn];
int maxv[maxn];
int d[maxn];
int n;
int dp(int i){
if(d[i] != -)
return d[i];
d[i] = -INF;
for(int j = ;j <= n;j++){
if(i >= V[j]){
d[i] = max(d[i],dp(i - V[j])+);
}
}
return d[i];
}
void print_ans(int * a,int s){
for(int i = ;i <= n;i++){
if(s >= V[i] && a[s] == a[s -V[i] ]+){
printf("%d ",V[i]);
print_ans(a,s-V[i]);
break;
}
}
}
void print_Ans(int *a,int s){
while(s){
printf("%d ",a[s]);
s -= a[s];
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("input.in","r",stdin);
// freopen("output.txt","w",stdout);
#endif
while(~scanf("%d",&n)){
int s;
scanf("%d",&s);
for(int i = ;i <= n;i++){
scanf("%d",&V[i]);
}
d[] = ;
for(int i = ;i <= s;i++)
d[i] = -;
minv[] = maxv[] = ;
for(int i = ;i <= s;i++){
minv[i] = INF;
maxv[i] = -INF;
}
int min_coin[maxn];
int max_coin[maxn];
for(int i = ;i <= s;i++){
for(int j = ;j <= n;j++){
if(i >= V[j]){
if(minv[i] > minv[i - V[j]]+){
minv[i] = min(minv[i],minv[i-V[j] ] + );
min_coin[i] = V[j];
}
if(maxv[i] < maxv[i-V[j] ]+){
maxv[i] = max(maxv[i],maxv[i -V[j] ]+);
max_coin[i] = V[j];
}
minv[i] = min(minv[i],minv[i-V[j] ] + );
maxv[i] = max(maxv[i],maxv[i -V[j] ]+);
}
}
}
print_Ans(min_coin,s);
printf("\n");
print_Ans(max_coin,s);
printf("\n");
printf("%d %d\n",minv[s],maxv[s]);
print_ans(minv,s);
printf("\n");
print_ans(maxv,s);
printf("\n");
int ans = dp(s) ;
if(ans < -){
printf("no problem\n");
}
else{
printf("%d\n",ans);
}
}
return ;
}
DAG上的动态规划的更多相关文章
- UVa 103 Stacking Boxes --- DAG上的动态规划
UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...
- DAG上的动态规划之嵌套矩形
题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...
- UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)
传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...
- 第九章(二)DAG上的动态规划
DAG上的动态规划: 有向无环图上的动态规划是学习DP的基础,很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 1.没有明确固定起点重点的DAG模型: 嵌套矩形问题:有n个矩形,每个矩形可 ...
- DAG 上的动态规划(训练指南—大白书)
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.矩形嵌套 题目描述: ...
- DP入门(2)——DAG上的动态规划
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...
- 嵌套矩形——DAG上的动态规划
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...
- DAG上的动态规划---嵌套矩形(模板题)
一.DAG的介绍 Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己. 摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都 ...
- 9.2 DAG上的动态规划
在有向无环图上的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路,最短路或路径计数问题 9.2.1 DAG模型 嵌套矩形问题: 矩形之间的可嵌套关系是一种典型的二元关系,二元关系可以 ...
- UVA 437 The Tower of Babylon(DAG上的动态规划)
题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...
随机推荐
- 2014 HDU多校弟六场J题 【模拟斗地主】
这是一道5Y的题目 有坑的地方我已在代码中注释好了 QAQ Ps:模拟题还是练的太少了,速度不够快诶 //#pragma comment(linker, "/STACK:16777216&q ...
- 感觉Release有时比Debug要健壮
评估文件夹大小的时候,直接跨线程操作UI界面,Debug崩溃,Release不崩溃. 更多的一种情况是,本机DEBUG下不崩溃,把RELEASE版本到别的机子上,立刻崩溃(登录框的进度条的对象为空,仍 ...
- c++ - Create empty json array with jsoncpp - Stack Overflow
python中multiprocessing.pool函数介绍_正在拉磨_新浪博客 multiprocessing.pool c++ - Create empty json array wit ...
- [置顶] 使用红孩儿工具箱完成基于Cocos2d-x的简单游戏动画界面
[Cocos2d-x相关教程来源于红孩儿的游戏编程之路CSDN博客地址:http://blog.csdn.net/honghaier 红孩儿Cocos2d-X学习园地QQ3群:205100149,47 ...
- HapiJS开发手冊
HapiJS开发手冊 作者:chszs.转载需注明.博客主页:http://blog.csdn.net/chszs 一.HapiJS介绍 HapiJS是一个开源的.基于Node.js的应用框架,它适用 ...
- AFNetworking2.5使用2
链接地址:http://blog.csdn.net/abc4715760/article/details/46521111 官网下载2.5版本:http://afnetworking.com/ 此文章 ...
- 【转】android加载大量图片内存溢出的三种解决办法
方法一: 在从网络或本地加载图片的时候,只加载缩略图. /** * 按照路径加载图片 * @param path 图片资源的存放路径 * @param scalSize 缩小的倍数 * @return ...
- android开发过程中遇到的小问题
转自:http://www.sctarena.com/Article/Article.asp?nid=50701.在编写xml布局的时候,总是提示[Accessibility] Missing ...
- IntelliJ IDEA 开发swing(一)
原文:idea开发swing(一) 最近项目组需要开发一个swing小工具,以下是开发过程. 一.创建工程: 输入工程名称,选择java module,点击next 接下来什么都不选点击finish, ...
- MySQL主键添加/删除
2改动数据库和表的字符集alter database maildb default character set utf8;//改动数据库的字符集alter table mailtable defaul ...