在做图像匹配时,常需要对两幅图像中的特征点进行匹配。为了保证匹配的准确性,所选择的特征必须有其独特性,角点可以作为一种不错的特征。

那么为什么角点有其独特性呢?角点往往是两条边缘的交点,它是两条边缘方向变换的一种表示,因此其两个方向的梯度变换通常都比较大并且容易检测到。

这里我们理解一下Harris Corner 一种角点检测的算法

角点检测基本原理:

人们通常通过在一个小的窗口区域内观察点的灰度值大小来识别角点,如果往任何方向移动窗口都会引起比较大的灰度变换那么往往这就是我们要找的角点。如下图右

下面我们看一下Harris的数学公式,对于[x,y]平移[u,v]个单位后强度的变换有下式,I(x+u,y+v)是平移后的强度,I(x,y)是原图像像素。对于括号里面的值,如果是强度恒定的区域,那么它就接近于零,反之如果强度变化剧烈那么其值将非常大,所以我们期望E(u,v)很大。

其中w是窗函数,它可以是加权函数,也可以是高斯函数

利用二维泰勒展开式我们有

所以其中一阶可以近似为

于是我们可以给出Harris Corner的如下推导,其中Ix,Iy是x,y方向的Gradient模,乘以位移得到位移后的量

对于小的位移,我们可以用双线性插值方法近似:

其中M为2*2矩阵如下

在本质上我们可以把二次项看成一个椭圆函数,我们对M进行特征值分析有λ1,λ2

根据λ1,λ2的值我们可以把其分为三类:

1.λ1,λ2都很小且近似,E在所以方向接近于常数;

2.λ1>>λ2,或者λ2>>λ1, E将在某一方向上很大;

3.λ1,λ2都很大且近似,E将在所以方向上很大;

如图所示:

最后我们通过计算角点响应值R来判断其属于哪个区间

其中k一般为常数取在0.04-0.06间。

算法步骤:

1.计算图像x,y方向的梯度Ix,Iy

2.计算每个像素点的梯度平方

3.计算梯度在每个像素点的和

4.定义在每个像素点的矩阵H,也就是前面的M

5.计算每个像素的角点响应

6.设置阈值找出可能点并进行非极大值抑制

代码:

close all
clear all I = imread('empire.jpg');
I = rgb2gray(I);
I = imresize(I,[500,300]);
imshow(I); sigma = 1;
halfwid = sigma * 3; [xx, yy] = meshgrid(-halfwid:halfwid, -halfwid:halfwid); Gxy = exp(-(xx .^ 2 + yy .^ 2) / (2 * sigma ^ 2));
Gx = xx .* exp(-(xx .^ 2 + yy .^ 2) / (2 * sigma ^ 2));
Gy = yy .* exp(-(xx .^ 2 + yy .^ 2) / (2 * sigma ^ 2)); %%apply sobel in herizontal direction and vertical direction compute the
%%gradient
%fx = [-1 0 1;-1 0 1;-1 0 1];
%fy = [1 1 1;0 0 0;-1 -1 -1];
Ix = conv2(I,Gx,'same');
Iy = conv2(I,Gy,'same');
%%compute Ix2, Iy2,Ixy
Ix2 = Ix.*Ix;
Iy2 = Iy.*Iy;
Ixy = Ix.*Iy; %%apply gaussian filter
h = fspecial('gaussian',[6,6],1);
Ix2 = conv2(Ix2,h,'same');
Iy2 = conv2(Iy2,h,'same');
Ixy = conv2(Ixy,h,'same');
height = size(I,1);
width = size(I,2);
result = zeros(height,width);
R = zeros(height,width);
Rmax = 0;
%% compute M matrix and corner response
for i = 1:height
for j =1:width
M = [Ix2(i,j) Ixy(i,j);Ixy(i,j) Iy(i,j)];
R(i,j) = det(M) - 0.04*(trace(M)^2);
if R(i,j)> Rmax
Rmax = R(i,j);
end
end
end
%% compare whith threshold
count = 0;
for i = 2:height-1
for j = 2:width-1
if R(i,j) > 0.01*Rmax
result(i,j) = 1;
count = count +1;
end
end
end %non-maxima suppression
result = imdilate(result, [1 1 1; 1 0 1; 1 1 1]); [posc,posr] = find(result == 1);
imshow(I);
hold on;
plot(posr,posc,'r.');

本文原创,转载请注明出处

Harris Corner(Harris角检测)的更多相关文章

  1. 【OpenCV十六新手教程】OpenCV角检测Harris角点检测

    本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/29356187 作者:毛星云(浅墨) ...

  2. OpenCV角点检测源代码分析(Harris和ShiTomasi角点)

    OpenCV中常用的角点检测为Harris角点和ShiTomasi角点. 以OpenCV源代码文件 .\opencv\sources\samples\cpp\tutorial_code\Trackin ...

  3. Harris Corner

    Harris Corner网上已经有很多的资料了,但它也是我读研究生后读的第一篇论文,对我有一种特别的意义. 这篇文章我想从几个方面来讲解Harris Corner,一是Harris Corner的思 ...

  4. OpenCV-Python 哈里斯角检测 | 三十七

    目标 在本章中, 我们将了解"Harris Corner Detection"背后的概念. 我们将看到以下函数:cv.cornerHarris(),cv.cornerSubPix( ...

  5. (13)Corner Detection角点检测

    import cv2 import numpy as np img=cv2.imread('opencv-corner-detection-sample.jpg') gray = cv2.cvtCol ...

  6. 目标检测之harr---点角检测harr

    Haar特征与积分图 1. Adaboost方法的引入 1.1 Boosting方法的提出和发展 在了解Adaboost方法之前,先了解一下Boosting方法. 回答一个是与否的问题,随机猜测可以获 ...

  7. 角点检测和匹配——Harris算子

    一.基本概念 角点corner:可以将角点看做两个边缘的交叉处,在两个方向上都有较大的变化.具体可由下图中分辨出来: 兴趣点interest point:兴趣点是图像中能够较鲁棒的检测出来的点,它不仅 ...

  8. OpenCV教程(43) harris角的检测(1)

          计算机视觉中,我们经常要匹配两幅图像.匹配的的方式就是通过比较两幅图像中的公共特征,比如边,角,以及图像块(blob)等,来对两幅图像进行匹配.      相对于边,角更适合描述图像特征, ...

  9. OpenCV——Harris、Shi Tomas、自定义、亚像素角点检测

    #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...

随机推荐

  1. SolrCloud 5.2.1 installation and configuration

    虽然不是很有技术含量的事情,主要依靠的是阅读能力,然而知识的东西还是记录一下,以备后继待查. 环境相关 1. Server:h1,h2,h3 2. OS RHEL 6.2 3. Zookeeper 3 ...

  2. JQ无法修改input的type属性的替代解决方法

    需要实现的效果:一个输入框,当输入框未获得焦点的时候,显示为 “请输入密码”:当输入内容并失去焦点的时候,输入内容显示为”*****”,如果没有输入仍然显示“请输入密码”: 方法一:使用text,隐藏 ...

  3. HDU_2049——部分错位排列,概率论

    Problem Description 国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样 ...

  4. memory_target not supported on this system

  5. LeetCode::Remove Duplicates from Sorted List II [具体分析]

    Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numb ...

  6. 大学生程序猿IT情书“2014爱的告白挑战赛”获奖名单及优秀情书展示系列之 - 【IT术语】情书+【搞笑另类】情书

    经过专家评委们的层层精心评选和认真讨论,恭喜下面同学终于入选CSDN高校俱乐部"大学生程序猿IT情书2014爱的告白挑战赛活动"优胜者名单.获奖者将在本周内收到邮件通知.请依照邮件 ...

  7. springMVC 注解版

    http://blog.csdn.net/liuxiit/article/details/5756115 http://blog.csdn.net/hantiannan/article/categor ...

  8. Linux中/etc/passwd文件与/etc/shadow文件解析.

    此文章转载自"慧可",用来学习. 1. /etc/passwd文件 1.1 /etc/passwd文件内容格式 用户名: 密码 : uid  : gid :用户描述:主目录:登陆s ...

  9. 网页、JavaScript 数据类型

    JavaScript 数据类型 一.基本数据类型: 字符串.数字.布尔.日期和时间 JavaScript 拥有动态类型 JavaScript 拥有动态类型.这意味着相同的变量可用作不同的类型: 1 v ...

  10. asp.net验证控件注意事项

    1.如果触发某个控件事件是只对指定验证控件进行验证,可以将验证控件和被触发控件放到到一个ValidationGroup中.比如点提交按钮的时候,验证文本框,可以将提交按钮和验证控件放到一个Valida ...