一、基本认识

RDD 是Spark大数据计算引擎中,抽象的一种数据结构。

RDD(Resilient Distributed Dataset),中文意思是弹性分布式数据集,它是Spark中的基本抽象。在Spark源码中,有下面的注释:

RDD 有五个主要的属性:

  • A list of partitions (分区列表)
  • A function for computing each split (分区计算函数) 相同的计算逻辑应用在不同的分区中
  • A list of dependencies on other RDDs (多个RDD之间存在依赖关系)
  • Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned) (对键值对类型的数据进行分区)
  • Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file) (首选位置,计算数据的位置)
二、RDD的执行原理
 
    类似于IO处理,体现了装饰者设计模式。
 
    从计算的角度来看,计算过程受两个因素的影响:计算资源和计算逻辑。执行计算的过程就是将计算资源和计算逻辑进行一定的整合。
    
    spark在执行计算的过程中,会先向集群申请资源,然后把程序的处理逻辑分成一个个的计算任务,然后把任务发到已经分配资源的计算节点上。按照指定的计算模型进行数据计算。
    
    RDD是spark用于数据处理的核心模型。Yarn环境中,RDD的执行原理如下所示:
 
  • 启动Yarn集群资源
    
           
 
  • spark申请资源,创建调度节点和计算节点
          
 
  • 根据需求,spark把计算逻辑,根据分区,划分成不同的任务
          
 
 
  • 调度节点把任务根据计算节点的状态,发送到对应的计算节点上进行计算
          
 
三、在代码中使用RDD
 
1、创建RDD
从集合(内存)、外部文件、其它RDD中创建RDD,代码如下:
 import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object Spark01RddCreate {
def main(args: Array[String]): Unit = {
System.setProperty("hadoop.home.dir", "C:\\Hadoop\\")
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark01rddmemory")
val sc = new SparkContext(sparkConf) // TODO: Spark 从内存中创建RDD
val list = List(1, 2, 3, 4)
val rdd1 = sc.parallelize(list)
val rdd2 = sc.makeRDD(list)
rdd1.collect().foreach(println)
rdd2.collect().foreach(println) // TODO: Spark 从外部文件中创建RDD
val sc_text: RDD[String] = sc.textFile("G:\\SNBRecommendSys\\recommender\\DataLoader\\src\\main\\input_data")
System.out.println("从外部文件中创建RDD:\n")
sc_text.collect().foreach(println) // TODO: Spark 从其他RDD创建RDD
val flatRDD = sc_text.flatMap(line => {
line.split(" ")
})
System.out.println("从其他RDD创建RDD:\n")
flatRDD.collect().foreach(println) sc.stop()
}
}

2、关于RDD并行度的理解

Spark将一个作业切分为多个任务后,会发送给Excutor节点并行计算,能够并行计算的任务数量就是并行度。计算的任务数量可以在创建RDD的时候去指定。
RDD中,分区的数量就是RDD的并行度,设置并行度就是设置分区的数量。
 
下面代码中,我们可以看到设置并行度,就是在创建RDD的时候,传入的第二个参数值
 import org.apache.spark.{SparkConf, SparkContext}

 object Spark02RddParallelizeSet {
def main(args: Array[String]): Unit = {
System.setProperty("hadoop.home.dir", "C:\\Hadoop\\")
val spark = new SparkConf().setMaster("local[*]").setAppName("RddParallelizeSet")
val context = new SparkContext(spark) val list = List(1, 2, 3, 4, 5) // TODO: 从内存创建RDD,并且设置并行执行的任务数量
// numSlices: Int = defaultParallelism
val memoryRDD = context.makeRDD(list, 4)
memoryRDD.collect().foreach(println) // TODO: 结束
context.stop()
}
}

我们在一层层进入Spark源码,最终可以查看到关于RDD并行度的相关信息:

我们可以在这个实现方法里看到 scheduler.conf.getInt(参数一,参数二),参数一是spark配置文件里的一个配置项,参数二的意思是本地机器的cpu核数。调度程序是从spark的配置文件里读取了 spark.default.parallelism 这个配置。如果没有读取到这个配置的话,则并行度设置将会与本地机器的cpu核数一样。

现在回到我们自己写的程序里,在创建spark配置实例的时候,我们其实已经在设置要用多少个本地机器的核数了:

setMaster() 里面的 local[*],代表的含义是本地机器cpu有多少核,在调度的时候就用到多少核。当然我们也可以设置其它数字,如果你想这样做的话。现在,我们大致可以理解设置并行度是怎么一回事了。
 
最后,源码是个好东西,多去看优秀的源码,很多不清楚的地方都能够迎刃而解。
加油,共勉!
 

关于Spark RDD 的认识的更多相关文章

  1. Spark Rdd coalesce()方法和repartition()方法

    在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量 ...

  2. Spark RDD API详解(一) Map和Reduce

    RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同 ...

  3. Spark RDD aggregateByKey

    aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考 直接上代码 import org.apache.spark.rdd.RDD import org.apache.spark. ...

  4. Spark RDD解密

    1.  基于数据集的处理: 从物理存储上加载数据,然后操作数据,然后写入数据到物理设备; 基于数据集的操作不适应的场景: 不适合于大量的迭代: 不适合交互式查询:每次查询都需要对磁盘进行交互. 基于数 ...

  5. Spark - RDD(弹性分布式数据集)

    org.apache.spark.rddRDDabstract class RDD[T] extends Serializable with Logging A Resilient Distribut ...

  6. Spark RDD Operations(1)

    以上是对应的RDD的各中操作,相对于MaoReduce只有map.reduce两种操作,Spark针对RDD的操作则比较多 ************************************** ...

  7. Spark RDD的依赖解读

    在Spark中, RDD是有依赖关系的,这种依赖关系有两种类型 窄依赖(Narrow Dependency) 宽依赖(Wide Dependency) 以下图说明RDD的窄依赖和宽依赖 窄依赖 窄依赖 ...

  8. Spark RDD操作(1)

    https://www.zybuluo.com/jewes/note/35032 RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RD ...

  9. Spark RDD概念学习系列之RDD的转换(十)

    RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的 ...

  10. Spark RDD概念学习系列之RDD的checkpoint(九)

     RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点?  答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容 ...

随机推荐

  1. Zookeeper集群部署及报错分析

    安装 下载压缩包 解压 修改zoo.cfg文件 创建myid文件 启动 自启动配置 有时间再补hhh 报错处理 很荣幸的遇到了大部分报错,日志再zookeeper目录的bin下的zookeeper.o ...

  2. Elasticsearch必知必会的干货知识二:ES索引操作技巧

    该系列上一篇文章<Elasticsearch必知必会的干货知识一:ES索引文档的CRUD> 讲了如何进行index的增删改查,本篇则侧重讲解说明如何对index进行创建.更改.迁移.查询配 ...

  3. 机器学习 | 简介推荐场景中的协同过滤算法,以及SVD的使用

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第29篇文章,我们来聊聊SVD在上古时期的推荐场景当中的应用. 推荐的背后逻辑 有没有思考过一个问题,当我们在淘宝或者是 ...

  4. jmeter控制器入门笔记一

    @@@@@@@@@@@@@@@ 千里之行 今天记录一下个人才使用控制器时的一些心得.逻辑控制器在jmeter中有很多种,个人根据官方解释理解的作用就是:通过控制器可以更好地控制请求的执行顺序.jmet ...

  5. 最长不下降代码dp

    我看以前写过一个最长不下降,但是感觉可能没有那么好理解emmmm 下面这个是从正序寻找的emmmm 先来一个WA代码,我给写了WA的具体行数,看看其他行其实可以看出它的思路 第二个代码是AC的 #in ...

  6. Get与Post的区别?(面试官最想听到的答案)

    GET和POST是HTTP请求的两种基本方法,要说它们的区别,接触过WEB开发的人都能说出一二. 最直观的区别就是GET把参数包含在URL中,POST通过request body传递参数. 你可能自己 ...

  7. HTML <html> manifest 属性

    实例 带有缓存 manifest 的 HTML 文档(用于离线浏览): <!DOCTYPE HTML><html manifest="demo.appcache" ...

  8. bzoj 4238 电压

    LINK:电压 一张图 每个点可以为黑点或百点 每一条边的两端都必须为一黑一白.询问又多少条边满足除了这条边不满足条件其余所有边都满足条件. 分析一下这个所谓的条件 每一条边的两端必须为一黑一白 所以 ...

  9. 最优化算法【牛顿法、拟牛顿法、BFGS算法】

    一.牛顿法 对于优化函数\(f(x)\),在\(x_0\)处泰勒展开, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其线性部分,忽略高阶无穷小,令\ ...

  10. 实验01——java模拟银行ATM系统

    用java写的一个模拟银行系统,比较初级. ATM.java package cn.tedu.yinhang; import java.util.Scanner; /** * @author 赵瑞鑫 ...