Flink基于用户程序生成JobGraph,提交到集群进行分布式部署运行。本篇从源码角度讲解一下Flink Jar包是如何被提交到集群的。(本文源码基于Flink 1.11.3)

1 Flink run 提交Jar包流程分析

首先分析run脚本可以找到入口类CliFrontend,这个类在main方法中解析参数,基于第二个参数定位到run方法:

try {
// do action
switch (action) {
case ACTION_RUN:
run(params);
return 0;
case ACTION_RUN_APPLICATION:
runApplication(params);
return 0;
case ACTION_LIST:
list(params);
return 0;
case ACTION_INFO:
info(params);
return 0;
case ACTION_CANCEL:
cancel(params);
return 0;
case ACTION_STOP:
stop(params);
return 0;
case ACTION_SAVEPOINT:
savepoint(params);
return 0;
case "-h":
case "--help":
...
return 0;
case "-v":
case "--version":
...
default:
...
return 1;
}
}

在run方法中,根据classpath、用户指定的jar、main函数等信息创建PackagedProgram。在Flink中通过Jar方式提交的任务都封装成了PackagedProgram对象。

protected void run(String[] args) throws Exception {
...
final ProgramOptions programOptions = ProgramOptions.create(commandLine);
final PackagedProgram program = getPackagedProgram(programOptions); // 把用户的jar配置到config里面
final List<URL> jobJars = program.getJobJarAndDependencies();
final Configuration effectiveConfiguration = getEffectiveConfiguration(
activeCommandLine, commandLine, programOptions, jobJars); try {
executeProgram(effectiveConfiguration, program);
} finally {
program.deleteExtractedLibraries();
}
}

创建PackagedProgram后,有个非常关键的步骤就是这个effectiveConfig,这里面会把相关的Jar都放入pipeline.jars这个属性里,后面pipeline提交作业时,这些jar也会一起提交到集群。

其中比较关键的是Flink的类加载机制,为了避免用户自己的jar内与其他用户冲突,采用了逆转类加载顺序的机制。

private PackagedProgram(
@Nullable File jarFile,
List<URL> classpaths,
@Nullable String entryPointClassName,
Configuration configuration,
SavepointRestoreSettings savepointRestoreSettings,
String... args) throws ProgramInvocationException { // 依赖的资源
this.classpaths = checkNotNull(classpaths); // 保存点配置
this.savepointSettings = checkNotNull(savepointRestoreSettings); // 参数配置
this.args = checkNotNull(args); // 用户jar
this.jarFile = loadJarFile(jarFile); // 自定义类加载
this.userCodeClassLoader = ClientUtils.buildUserCodeClassLoader(
getJobJarAndDependencies(),
classpaths,
getClass().getClassLoader(),
configuration); // 加载main函数
this.mainClass = loadMainClass(
entryPointClassName != null ? entryPointClassName : getEntryPointClassNameFromJar(this.jarFile),
userCodeClassLoader);
}

在类加载器工具类中根据参数classloader.resolve-order决定是父类优先还是子类优先,默认是使用子类优先模式。

executeProgram方法内部是启动任务的核心,在完成一系列的环境初始化后(主要是类加载以及一些输出信息),会调用packagedProgram的invokeInteractiveModeForExecution的,在这个方法里通过反射调用用户的main方法。

private static void callMainMethod(Class<?> entryClass, String[] args)
throws ProgramInvocationException {
...
Method mainMethod = entryClass.getMethod("main", String[].class);
mainMethod.invoke(null, (Object) args);
...
}

执行用户的main方法后,就是flink的标准流程了。创建env、构建StreamDAG、生成Pipeline、提交到集群、阻塞运行。当main程序执行完毕,整个run脚本程序也就退出了。

总结来说,Flink提交Jar任务的流程是:
1 脚本入口程序根据参数决定做什么操作
2 创建PackagedProgram,准备相关jar和类加载器
3 通过反射调用用户Main方法
4 构建Pipeline,提交到集群

2 通过PackagedProgram获取Pipeline

有的时候不想通过阻塞的方式卡任务执行状态,需要通过类似JobClient的客户端异步查询程序状态,并提供停止退出的能力。

要了解这个流程,首先要了解Pipeline是什么。用户编写的Flink程序,无论是DataStream API还是SQL,最终编译出的都是Pipeline。只是DataStream API编译出的是StreamGraph,而SQL编译出的Plan。Pipeline会在env.execute()中进行编译并提交到集群。

既然这样,此时可以思考一个问题:Jar包任务是独立的Main方法,如何能抽取其中的用户程序获得Pipeline呢?

通过浏览源码的单元测试,发现了一个很好用的工具类:PackagedProgramUtils。

public static Pipeline getPipelineFromProgram(
PackagedProgram program,
Configuration configuration,
int parallelism,
boolean suppressOutput) throws CompilerException, ProgramInvocationException { // 切换classloader
final ClassLoader contextClassLoader = Thread.currentThread().getContextClassLoader();
Thread.currentThread().setContextClassLoader(program.getUserCodeClassLoader()); // 创建env
OptimizerPlanEnvironment benv = new OptimizerPlanEnvironment(
configuration,
program.getUserCodeClassLoader(),
parallelism);
benv.setAsContext();
StreamPlanEnvironment senv = new StreamPlanEnvironment(
configuration,
program.getUserCodeClassLoader(),
parallelism);
senv.setAsContext(); try {
// 执行用户main方法
program.invokeInteractiveModeForExecution();
} catch (Throwable t) {
if (benv.getPipeline() != null) {
return benv.getPipeline();
} if (senv.getPipeline() != null) {
return senv.getPipeline();
} ...
} finally {
// 重置classloader
}
}

这个工具类首先在线程内创建了一个env,这个env通过threadload保存到当前线程中。当通过反射调用用户代码main方法时,内部的getEnv函数直接从threadlocal中获取到这个env。

ThreadLocal<StreamExecutionEnvironmentFactory> factory = new ThreadLocal<>();

public static StreamExecutionEnvironment getExecutionEnvironment() {
return Utils.resolveFactory(factory , contextEnvironmentFactory)
.map(StreamExecutionEnvironmentFactory::createExecutionEnvironment)
.orElseGet(StreamExecutionEnvironment::createLocalEnvironment);
}

再回头看看env有什么特殊的。

public class StreamPlanEnvironment extends StreamExecutionEnvironment {

    private Pipeline pipeline;

    public Pipeline getPipeline() {
return pipeline;
} @Override
public JobClient executeAsync(StreamGraph streamGraph) {
pipeline = streamGraph; // do not go on with anything now!
throw new ProgramAbortException();
}
}

原来是重写了executeAysnc方法,当用户执行env.execute时,触发异常,从而在PackagedProgramUtils里面拦截异常,获取到用户到pipeline。

总结起来流程如下:

3 编程实战

通过阅读上述源码,可以学习到:

1 classloader类加载的父类优先和子类优先问题
2 threadlocal线程级本地变量的使用
3 PackagedProgramUtils 利用枚举作为工具类
4 PackagedProgramUtils 利用重写env,拦截异常获取pipeline。

关于pipeline如何提交到集群、如何运行,就后文再谈了。

Flink源码剖析:Jar包任务提交流程的更多相关文章

  1. 转】MyEclipse使用总结——使用MyEclipse打包带源码的jar包

    原博文出自于: http://www.cnblogs.com/xdp-gacl/p/4136303.html 感谢! 平时开发中,我们喜欢将一些类打包成jar包,然后在别的项目中继续使用,不过由于看不 ...

  2. MyEclipse使用总结——使用MyEclipse打包带源码的jar包

    平时开发中,我们喜欢将一些类打包成jar包,然后在别的项目中继续使用,不过由于看不到jar包里面的类的源码了,所以也就无法调试,要想调试,那么就只能通过关联源代码的形式,这样或多或少也有一些不方便,今 ...

  3. eclipse导出附带源码的jar包

    最近在搞Andengine游戏开发,发现andengine的jar包可以直接点击查看源码,而其他项目的jar包却看不了,因此自己研究了下如何生成可以直接查看源码的jar包. 1.eclipse中点击项 ...

  4. MyEclipse打包带源码的jar包

    平时开发中,我们喜欢将一些类打包成jar包,然后在别的项目中继续使用,不过由于看不到jar包里面的类的源码了,所以也就无法调试,要想调试,那么就只能通过关联源代码的形式,这样或多或少也有一些不方便,今 ...

  5. Eclipse使用总结——使用Eclipse打包带源码的jar包

    平时开发中,我们喜欢将一些类打包成jar包,然后在别的项目中继续使用,不过由于看不到jar包里面的类的源码了,所以也就无法调试,要想调试,那么就只能通过关联源代码的形式,这样或多或少也有一些不方便,今 ...

  6. Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Job Manager 启动

    Job Manager 启动 https://t.zsxq.com/AurR3rN 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac ...

  7. Flink 源码解析 —— Standalone session 模式启动流程

    Standalone session 模式启动流程 https://t.zsxq.com/EemAEIi 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0 ...

  8. Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Task Manager 启动

    Task Manager 启动 https://t.zsxq.com/qjEUFau 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Ma ...

  9. Apache DolphinScheduler 源码剖析之 Worker 容错处理流程

    今天给大家带来的分享是 Apache DolphinScheduler 源码剖析之 Worker 容错处理流程 DolphinScheduler源码剖析之Worker容错处理流程 Worker容错流程 ...

  10. DolphinScheduler 源码剖析之 Master 容错处理流程

    点击上方蓝字关注 Apache DolphinScheduler Apache DolphinScheduler(incubating),简称"DS", 中文名 "海豚调 ...

随机推荐

  1. 前端开发超好用的截图、取色工具——snipaste

    最近发现一个很好用的前端截图,取色工具,并且基本功能是免费使用的,可以提升开发效率,拿出来跟大家分享一下. 该工具主要能实现的功能就是截图,并且截图可以以窗口形式置顶在窗口: 第二个主要功能就是可以取 ...

  2. mybatis-plus快速入门并使用

    目录 mybatis-plus的初次使用总结 说明:官网自有黄金屋,深入学习看官网是必须的,废话不多说 环境:springboot.mysql 一.配置 pom yml配置数据库 二.代码生成器 生成 ...

  3. jmeter的一些知识目录

    1.JDK安装及环境变量配置2.Jmeter安装及环境变量配置3.如何启动 jmeter 4.下载并安装mysql驱动5.创建JDBC连接池及配置6 .新建线程组及参数配置7.http默认请求及参数配 ...

  4. HDU4388-Stone Game II-Nim变形

    http://acm.hdu.edu.cn/showproblem.php?pid=4388 Nim变形,对一个\(n\)个石子的堆,每次取\(k(0<k<n)\)个(注意不能全取光),同 ...

  5. 软件测试最常用的 SQL 命令 | 掌握基本查询、条件查询、聚合查询

    1.DML核心CRUD增删改查 缩写全称和对应 SQL: * DML 数据操纵语言:Data Manipulation Language * Create 增加:insert * Retrieve 查 ...

  6. 在Centos下使用Siege对Django服务进行压力测试

    Siege是linux下的一个web系统的压力测试工具,支持多链接,支持get和post请求,可以对web系统进行多并发下持续请求的压力测试.今天我们就使用Siege来对Django进行一次压力测试, ...

  7. (二)、vim即gvim的炫酷搜索模式与技巧

      一.进入搜索模式 1. 打开文件,狂按  <Esc> 进入normal模式,然后按  /  或者  :/  进入搜索模式,添加上关键字例如world,按回车即搜索world: :/wo ...

  8. .net core 和 WPF 开发升讯威在线客服与营销系统:系统总体架构

    本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 在线演示环境:https://kf.shengxunwei.com 注意 ...

  9. 10天,从.Net转Java,并找到月薪2W的工作(二)

    辞去.Net工作之后,第一天直接去星巴克学习. 研究如何入门Java,对比学习资料以及安装Ieda. 由于正版太贵,Mac又不容易破解.鼓捣半天,最后结果是,我决定用教育账号申请一年的免费IDEA. ...

  10. Python基础(上篇)

    本篇文章主要内容:变量.注释.运算符.关键字.数据类型. 在入手变量之前我们先来看看经典的编程语句 → hello world 在python3中输出到控制台的函数是print() print(&qu ...