大家好,我们的git专题已经更新结束了,所以开始继续给大家写一点设计模式的内容。

今天给大家介绍的设计模式非常简单,叫做iterator,也就是迭代器模式。迭代器是Python语言当中一个非常重要的内容,借助迭代器我们可以很方便地实现很多复杂的功能。在深度学习当中,数据的获取往往也是通过迭代器实现的。因此这部分的内容非常重要,推荐大家一定要掌握。

简单案例

在开始介绍设计模式之前,我们先来看一个简单的需求。假设现在我们需要根据传入的变量获取每周的前几天,比如说我们传入3返回的就是[Mon, Tue, Wed],我们传入5返回[Mon, Tue, Wed, Thu, Fri]。这个需求大家应该都能理解,非常非常简单。

如果用一个函数来实现的话,就是这样:

def return_days(n):
    week = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
    return week[:n]

你看三行代码就实现了,在这个问题场景当中这样写当然是没有问题。但假如我们把题目稍微变一变,这里的week不是一个固定的数据,而是从上游或者是某个文件当中读取的。这里的n也是一个很大的数,我们把这个函数改写成这样:

def get_data(n):
    data = []
    for i in range(n):
        data.append(get_from_upstream())
    return data

我们假设get_from_upstream这个函数当中实现了获取数据的具体逻辑,那么上面这一段函数有一个什么问题?

有些同学会说这没有问题啊,因为像是其他语言实现数据获取的时候也都是这么干的。的确,像是Java等语言可能都是这么干的。但是其他语言这么干没错,不代表Python这么干也没错。因为我们没有把Python的能力发挥到最大

这里有两个问题,第一个问题是延迟,因为前面说了,n是一个很大的数。我们从上游获取数据,无论是通过网络还是文件读取,本质上都是IO操作,IO操作的延迟是非常大的。那么我们把这n条数据全部搜集完可能需要很长的时间,导致下游的漫长等待。第二个问题就是内存,因为我们存储了这n条数据一起返回的,如果n很大,对于内存的开销压力也很大,如果机器内存不够很有可能导致崩溃。

那怎么解决呢?

其实解决的方法很简单,如果对迭代器熟悉的话,会发现迭代器针对的恰恰是这两个问题。我们把上面的逻辑改写成迭代器实现即可,这也就是iterator模式。

iterator模式

iterator模式严格说起来其实只是迭代器的一种应用,它非常巧妙地将迭代器与匿名函数结合在一起,里面也没有太多的门道可以说,我们把刚才的代码改写一下,细节都在代码当中。

def get_data(n):
    for i in range(n):
  yield get_from_upstream()

data_10 = lambda: get_data(10)
data_100 = lambda: get_data(100)

# use
for d in data_10:
    print(d)

很简单吧,但可能你要问了,我们既然写出了get_data这个迭代器,那么我们使用的时候直接for d in get_data(10)这样用不就好了,为什么中间要用匿名函数包一层呢?

道理也很简单,如果这个数据是我们自己使用,当然是没必要中间包一层的。但如果我们是传给下游使用的话,对于下游来说它肯定是不希望考虑上游太多的细节的,越简单越好。所以我们直接丢一个包装好的迭代器过去,下游直接call即可。否则的话,下游还需要感知get_data这个函数传入的参数,显然是不够合理的。

今天的文章就到这里,衷心祝愿大家每天都有所收获。如果还喜欢今天的内容的话,请来一个三连支持吧~(点赞、关注、转发

迭代器设计模式,帮你大幅提升Python性能的更多相关文章

  1. 利用 NGINX 最大化 Python 性能,第二部分:负载均衡和监控

    [编者按]本文主要介绍 NGINX 的主要功能以及如何通过 Nginx 优化 Python 应用性能.本文系国内 ITOM 管理平台 OneAPM 编译呈现. 本文上一篇系: 利用 NGINX 最大化 ...

  2. 利用 NGINX 最大化 Python 性能,第一部分:Web 服务和缓存

    [编者按]本文主要介绍 nginx 的主要功能以及如何通过 NGINX 优化 Python 应用性能.本文系国内 ITOM 管理平台 OneAPM 编译呈现. Python 的著名之处在于使用简单方便 ...

  3. python性能分析(一)——使用timeit给你的程序打个表吧

    前言 我们可以通过查看程序核心算法的代码,得知核心算法的渐进上界或者下界,从而大概估计出程序在运行时的效率,但是这并不够直观,也不一定十分靠谱(在整体程序中仍有一些不可忽略的运行细节在估计时被忽略了) ...

  4. 如何进行 Python性能分析,你才能如鱼得水?

    [编者按]本文作者为 Bryan Helmig,主要介绍 Python 应用性能分析的三种进阶方案.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 我们应该忽略一些微小的效率提升,几乎在 9 ...

  5. Python性能提升小技巧

    第一部分 1-使用内建函数: 你可以用Python写出高效的代码,但很难击败内建函数. 经查证. 他们非常快速 2-使用 join() 连接字符串. 你可以使用 + 来连接字符串. 但由于string ...

  6. Python性能鸡汤

    http://pythoner.org/wiki/257/ 毫无疑问:Python程序没有编译型语言高效快速. 甚至Python拥护者们会告诉你Python不适合这些领域. 然而,YouTube已用P ...

  7. 性能测试培训:帮你定位 Linux 性能问题的 18 个命令以及工具

    性能测试培训:帮你定位 Linux 性能问题的 18 个命令以及工具 poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.在popte ...

  8. Python 性能剖分工具

    Python 性能剖分工具 眼看着项目即将完成,却被测试人员告知没有通过性能测试,这种情况在开发中屡见不鲜.接下来的工作就是加班加点地找出性能瓶颈,然后进行优化,再进行性能测试,如此这般周而复始直到通 ...

  9. Python性能分析

    Python性能分析 https://www.cnblogs.com/lrysjtu/p/5651816.html https://www.cnblogs.com/cbscan/articles/33 ...

随机推荐

  1. 第9.3节 Python的文件行读取:readline

    一. 语法 readline(size=-1) readline函数顾名思义就是从文件内读取一行,用来处理文本文件读取的典型方法之一,但readline可不只是读取文本文件,也能读取二进制文件,只是在 ...

  2. Hbase API 多条件查询

    public static ResultScanner scan(String tableName, String family, List<String> columns, List&l ...

  3. 归并排序(c++,递归)

    放上c++代码模板(但是该版本中,还可以再进一步优化成原地算法,即不开辟新的空间:本代码中空间复杂度为n,不是1) 1 #include <iostream> 2 #include< ...

  4. LeetCode初级算法之数组:283 移动零

    移动零 题目地址:https://leetcode-cn.com/problems/move-zeroes/ 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺 ...

  5. CF1400F - x-prime Substrings

    1400F - x-prime Substrings 首先发现 \(x\) 很小,所以发现对应的 x-prime 字符串数也很少,最多的情况是 \(x = 19\),有 2399 个,先爆搜出来. 现 ...

  6. 【Codeforces 1097F】Alex and a TV Show(bitset & 莫比乌斯反演)

    Description 你需要维护 \(n\) 个可重集,并执行 \(m\) 次操作: 1 x v:\(X\leftarrow \{v\}\): 2 x y z:\(X\leftarrow Y \cu ...

  7. 题解-NOI2003 智破连环阵

    题面 NOI2003 智破连环阵 有 \(m\) 个靶子 \((ax_j,ay_j)\) 和 \(n\) 个箭塔 \((bx_i,by_i)\).每个箭塔可以射中距离在 \(k\) 以内的靶子.第 \ ...

  8. 【学习笔记】K 短路问题详解

    \(k\) 短路问题简介 所谓"\(k\) 短路"问题,即给定一张 \(n\) 个点,\(m\) 条边的有向图,给定起点 \(s\) 和终点 \(t\),求出所有 \(s\to t ...

  9. 你必须要知道的HTTP协议原理

    1 基本概念 HTTP协议:基于TCP协议之上实现的无状态.全文本的标准通信协议. 客户端:例如pc浏览器,移动应用端,第三方服务器等能发起http访问的设备. 服务器:能够接受HTTP协议请求,并且 ...

  10. 精尽Spring MVC源码分析 - 寻找遗失的 web.xml

    该系列文档是本人在学习 Spring MVC 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释 Spring MVC 源码分析 GitHub 地址 进行阅读 Spring 版本:5.2. ...