tensorflow的广播机制
TensorFlow支持广播机制(Broadcast),可以广播元素间操作(elementwise operations)。正常情况下,当你想要进行一些操作如加法,乘法时,你需要确保操作数的形状是相匹配的,如:你不能将一个具有形状[3, 2]的张量和一个具有[3,4]形状的张量相加。但是,这里有一个特殊情况,那就是当你的其中一个操作数是一个具有单独维度(singular dimension)的张量的时候,TF会隐式地在它的单独维度方向填满(tile),以确保和另一个操作数的形状相匹配。所以,对一个[3,2]的张量和一个[3,1]的张量相加在TF中是合法的。(译者:这个机制继承自numpy的广播功能。其中所谓的单独维度就是一个维度为1,或者那个维度缺失)
import tensorflow as tf a = tf.constant([[1., 2.], [3., 4.]])
b = tf.constant([[1.], [2.]])
# c = a + tf.tile(b, [1, 2])
c = a + b
广播机制允许我们在隐式情况下进行填充(tile),而这可以使得我们的代码更加简洁,并且更有效率地利用内存,因为我们不需要另外储存填充操作的结果。一个可以表现这个优势的应用场景就是在结合具有不同长度的特征向量的时候。为了拼接具有不同长度的特征向量,我们一般都先填充输入向量,拼接这个结果然后进行之后的一系列非线性操作等。这是一大类神经网络架构的共同套路(common pattern)
a = tf.random_uniform([5, 3, 5])
b = tf.random_uniform([5, 1, 6]) # concat a and b and apply nonlinearity
tiled_b = tf.tile(b, [1, 3, 1])
c = tf.concat([a, tiled_b], 2)
d = tf.layers.dense(c, 10, activation=tf.nn.relu)
但是这个可以通过广播机制更有效地完成。我们利用事实f(m(x+y))=f(mx+my)f(m(x+y))=f(mx+my),简化我们的填充操作。因此,我们可以分离地进行这个线性操作,利用广播机制隐式地完成拼接操作。
pa = tf.layers.dense(a, 10, activation=None)
pb = tf.layers.dense(b, 10, activation=None)
d = tf.nn.relu(pa + pb)
事实上,这个代码足够通用,并且可以在具有抽象形状(arbitrary shape)的张量间应用:
def merge(a, b, units, activation=tf.nn.relu):
pa = tf.layers.dense(a, units, activation=None)
pb = tf.layers.dense(b, units, activation=None)
c = pa + pb
if activation is not None:
c = activation(c)
return c
一个更为通用函数形式如上所述:
目前为止,我们讨论了广播机制的优点,但是同样的广播机制也有其缺点,隐式假设几乎总是使得调试变得更加困难,考虑下面的例子:
a = tf.constant([[1.], [2.]])
b = tf.constant([1., 2.])
c = tf.reduce_sum(a + b)
你猜这个结果是多少?如果你说是6,那么你就错了,答案应该是12.这是因为当两个张量的阶数不匹配的时候,在进行元素间操作之前,TF将会自动地在更低阶数的张量的第一个维度开始扩展,所以这个加法的结果将会变为[[2, 3], [3, 4]],所以这个reduce的结果是12.
(译者:答案详解如下,第一个张量的shape为[2, 1],第二个张量的shape为[2,]。因为从较低阶数张量的第一个维度开始扩展,所以应该将第二个张量扩展为shape=[2,2],也就是值为[[1,2], [1,2]]。第一个张量将会变成shape=[2,2],其值为[[1, 1], [2, 2]]。)
解决这种麻烦的方法就是尽可能地显示使用。我们在需要reduce某些张量的时候,显式地指定维度,然后寻找这个bug就会变得简单:
a = tf.constant([[1.], [2.]])
b = tf.constant([1., 2.])
c = tf.reduce_sum(a + b, 0)
这样,c的值就是[5, 7],我们就容易猜到其出错的原因。一个更通用的法则就是总是在reduce操作和在使用tf.squeeze中指定维度。
tensorflow的广播机制的更多相关文章
- numpy和tensorflow中的广播机制
广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...
- [开发技巧]·Numpy广播机制的深入理解与应用
[开发技巧]·Numpy广播机制的深入理解与应用 1.问题描述 我们在使用Numpy进行数据的处理时,经常会用到广播机制来简化操作,例如在所有元素都加上一个数,或者在某些纬度上作相同的操作.广播机制很 ...
- numpy中的广播机制
广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...
- Android随笔之——Android广播机制Broadcast详解
在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理.这个广播跟我们传统意义中的电台广播有些相似之处.之所以叫做广播,就 ...
- Android广播机制的深入学习
部分内容转载自http://www.cnblogs.com/lwbqqyumidi/p/4168017.html 1.Android广播机制概述 Android广播分为两个方面:广播发送者和广播接收者 ...
- Android总结篇系列:Android广播机制
1.Android广播机制概述 Android广播分为两个方面:广播发送者和广播接收者,通常情况下,BroadcastReceiver指的就是广播接收者(广播接收器).广播作为Android组件间的通 ...
- 九、Android学习第八天——广播机制与WIFI网络操作(转)
(转自:http://wenku.baidu.com/view/af39b3164431b90d6c85c72f.html) 九.Android学习第八天——广播机制与WIFI网络操作 今天熟悉了An ...
- Android 中的消息传递,详解广播机制
--------------------------------------广播机制简介--------------------------------------------- Android中的广 ...
- Android广播机制简介
为什么说Android中的广播机制更加灵活呢?这是因为Android中的每个应用程序都可以对自己感兴趣的广播进行注册,这样该程序就只会接收到自己所关心的广播内容,这些广播可能是来自于系统的,也可能是来 ...
随机推荐
- Linux系统的一些问题
1.操作系统提供的服务: - 进程调度 - 内存管理 - 磁盘管理 - 网络服务 - 设备管理 - 提供应用程序编程接口 2.shell是什么? shell是一种具有特殊用途的程序,主要用于读取用户输 ...
- 多测师讲解 自动化测试理论(1)_高级讲师肖sir
自动化测试理论什么是自动化测试?广义的:通过工具或程序替代或辅助人工测试的行为叫自动化测试狭义的:通过工具录制或编写脚本模拟手工测试的过程,通过回放或运行脚本执行测试用例,从而代替人工对系统的功能验证 ...
- JavaWeb01_html&css
一. html简介 1. 什么是html ①. HyperText Markup Language:超文本标记语言,是最基本的网页语言 ②. 超文本:超出文本范畴 ③. 标记:标记就是标签,html所 ...
- 【C/C++编程入门学习】同样是数据类型,链表对比数组?哪一个更香?
说起链表,第一反应:链表是一种数据类型!它可以用来存储同种类型多个批量数据. 有了这种认知,很容易去联想到数组,它也是一种数据类型,也可以用来存储同种类型的批量数据.初学者往往对数组的印象比较好, ...
- xpath教程-逐层检索和全局检索 转
逐层检索和全局检索 布啦豆 11203 本节主要介绍用xpath来描述html的层级关系 主要使用到的知识点如下: 单独的一个点 .,表示当前位置 两个点 ..,表示上一级父标签的位置 单独的一个 ...
- 第三十三章 linux常规练习题(二)
一.练习题一 1.删除用户基本组shanghai03.发现无法正常删除,怎样才能将其删除掉,不能删除用户.2.打开多个xshell窗口连接登录同一虚拟机,使用不同的用户登录多次,分别使用w和who命令 ...
- IntelliJ IDEA 15款 神级超级牛逼插件推荐(超赞,谁用谁知道)
满满的都是干货 所有插件都是在 ctrl+alt+s 里的plugins 里进行搜索安装 1.CodeGlance 代码迷你缩放图插件 2. Codota 代码提示工具,扫描你的代码后,根据你的敲击 ...
- PyCharm搭配github错误处理
ssh -T git@github.com 验证时 报错Could not open a connection to your authentication agent. 删除前面生成的.ssh文件 ...
- Helium文档10-WebUI自动化-Text识别网页上的任何文本或标签
前言 Text关键字的作用是识别网页上的文字,在一般UI查找中使用率非常高,但是需要注意,如果网页上有相同的文字,那么只能识别到第一个 入参介绍 以下是Text的源码 有5个如参:后面4个参数是上下左 ...
- C#数据结构-队列
队列作为线性表的另一个数据结构,只允许在表的前端进行删除操作,而在表的后端进行插入操作,和栈一样,队列是一种操作受限制的线性表. 先来看下用法: Queue queue = new Queue(); ...