tensorflow的广播机制
TensorFlow支持广播机制(Broadcast),可以广播元素间操作(elementwise operations)。正常情况下,当你想要进行一些操作如加法,乘法时,你需要确保操作数的形状是相匹配的,如:你不能将一个具有形状[3, 2]的张量和一个具有[3,4]形状的张量相加。但是,这里有一个特殊情况,那就是当你的其中一个操作数是一个具有单独维度(singular dimension)的张量的时候,TF会隐式地在它的单独维度方向填满(tile),以确保和另一个操作数的形状相匹配。所以,对一个[3,2]的张量和一个[3,1]的张量相加在TF中是合法的。(译者:这个机制继承自numpy的广播功能。其中所谓的单独维度就是一个维度为1,或者那个维度缺失)
import tensorflow as tf a = tf.constant([[1., 2.], [3., 4.]])
b = tf.constant([[1.], [2.]])
# c = a + tf.tile(b, [1, 2])
c = a + b
广播机制允许我们在隐式情况下进行填充(tile),而这可以使得我们的代码更加简洁,并且更有效率地利用内存,因为我们不需要另外储存填充操作的结果。一个可以表现这个优势的应用场景就是在结合具有不同长度的特征向量的时候。为了拼接具有不同长度的特征向量,我们一般都先填充输入向量,拼接这个结果然后进行之后的一系列非线性操作等。这是一大类神经网络架构的共同套路(common pattern)
a = tf.random_uniform([5, 3, 5])
b = tf.random_uniform([5, 1, 6]) # concat a and b and apply nonlinearity
tiled_b = tf.tile(b, [1, 3, 1])
c = tf.concat([a, tiled_b], 2)
d = tf.layers.dense(c, 10, activation=tf.nn.relu)
但是这个可以通过广播机制更有效地完成。我们利用事实f(m(x+y))=f(mx+my)f(m(x+y))=f(mx+my),简化我们的填充操作。因此,我们可以分离地进行这个线性操作,利用广播机制隐式地完成拼接操作。
pa = tf.layers.dense(a, 10, activation=None)
pb = tf.layers.dense(b, 10, activation=None)
d = tf.nn.relu(pa + pb)
事实上,这个代码足够通用,并且可以在具有抽象形状(arbitrary shape)的张量间应用:
def merge(a, b, units, activation=tf.nn.relu):
pa = tf.layers.dense(a, units, activation=None)
pb = tf.layers.dense(b, units, activation=None)
c = pa + pb
if activation is not None:
c = activation(c)
return c
一个更为通用函数形式如上所述:
目前为止,我们讨论了广播机制的优点,但是同样的广播机制也有其缺点,隐式假设几乎总是使得调试变得更加困难,考虑下面的例子:
a = tf.constant([[1.], [2.]])
b = tf.constant([1., 2.])
c = tf.reduce_sum(a + b)
你猜这个结果是多少?如果你说是6,那么你就错了,答案应该是12.这是因为当两个张量的阶数不匹配的时候,在进行元素间操作之前,TF将会自动地在更低阶数的张量的第一个维度开始扩展,所以这个加法的结果将会变为[[2, 3], [3, 4]],所以这个reduce的结果是12.
(译者:答案详解如下,第一个张量的shape为[2, 1],第二个张量的shape为[2,]。因为从较低阶数张量的第一个维度开始扩展,所以应该将第二个张量扩展为shape=[2,2],也就是值为[[1,2], [1,2]]。第一个张量将会变成shape=[2,2],其值为[[1, 1], [2, 2]]。)
解决这种麻烦的方法就是尽可能地显示使用。我们在需要reduce某些张量的时候,显式地指定维度,然后寻找这个bug就会变得简单:
a = tf.constant([[1.], [2.]])
b = tf.constant([1., 2.])
c = tf.reduce_sum(a + b, 0)
这样,c的值就是[5, 7],我们就容易猜到其出错的原因。一个更通用的法则就是总是在reduce操作和在使用tf.squeeze
中指定维度。
tensorflow的广播机制的更多相关文章
- numpy和tensorflow中的广播机制
广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...
- [开发技巧]·Numpy广播机制的深入理解与应用
[开发技巧]·Numpy广播机制的深入理解与应用 1.问题描述 我们在使用Numpy进行数据的处理时,经常会用到广播机制来简化操作,例如在所有元素都加上一个数,或者在某些纬度上作相同的操作.广播机制很 ...
- numpy中的广播机制
广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...
- Android随笔之——Android广播机制Broadcast详解
在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理.这个广播跟我们传统意义中的电台广播有些相似之处.之所以叫做广播,就 ...
- Android广播机制的深入学习
部分内容转载自http://www.cnblogs.com/lwbqqyumidi/p/4168017.html 1.Android广播机制概述 Android广播分为两个方面:广播发送者和广播接收者 ...
- Android总结篇系列:Android广播机制
1.Android广播机制概述 Android广播分为两个方面:广播发送者和广播接收者,通常情况下,BroadcastReceiver指的就是广播接收者(广播接收器).广播作为Android组件间的通 ...
- 九、Android学习第八天——广播机制与WIFI网络操作(转)
(转自:http://wenku.baidu.com/view/af39b3164431b90d6c85c72f.html) 九.Android学习第八天——广播机制与WIFI网络操作 今天熟悉了An ...
- Android 中的消息传递,详解广播机制
--------------------------------------广播机制简介--------------------------------------------- Android中的广 ...
- Android广播机制简介
为什么说Android中的广播机制更加灵活呢?这是因为Android中的每个应用程序都可以对自己感兴趣的广播进行注册,这样该程序就只会接收到自己所关心的广播内容,这些广播可能是来自于系统的,也可能是来 ...
随机推荐
- Activity的常用控件
TimerPick(时间控件)public Integer getCurrentHour() //返回当前设置的小时public Integer getCurrentMinute()//返回当前设置的 ...
- 《凤凰项目:一个IT运维的传奇故事》读书笔记
- Tensorflow学习笔记No.6
数据的批标准化 本篇主要讲述什么是标准化,为什么要标准化,以及如何进行标准化(添加BN层). 1.什么是标准化 传统机器学习中标准化也叫做归一化. 一般是将数据映射到指定的范围,用于去除不同维度数据的 ...
- devops-jenkins基于角色的权限管理RBAC
一. devops-jenkins基于角色的权限管理RBAC 1 安装角色的rbac角色管理 1.1) 点击系统管理 1.2) 选择插件管理 1.3) 选择可选插件,输入role搜索 1.4) 选择 ...
- java基础小程序—万年历
package day02.xiangmu.wannianli; import java.util.Scanner; public class CalendarTest { public static ...
- day41 Pyhton 并发编程04
内容回顾 socket 最底层的网络通信 所有的网络通信都是基于socket 进程 什么是进程? 是操作系统的发展过程中,为了提高cpu的利用率,在操作系统同时运行多个程序的时候,为了数据的安 ...
- 旋转子段 (思维stl)
题目: 大概意思就是给你一个序列,你可以选择一段区间使它左右翻折一遍,然后呢,从1到n找一遍,看a[i]==i的数最多是多少. 其实刚才我已经把暴力思路说出来了,枚举每一个区间长度,枚举每一个左端点, ...
- go xpath
package main import ( "fmt" "github.com/antchfx/htmlquery" "net/http" ...
- C# 微支付退款申请接口 V3.3.6
/// <summary>/// 微支付退款申请/// </summary>/// <param name="context"></par ...
- MySQL备份和恢复[2]-基于LVM的快照备份
准备工作 请求锁定所有表 mysql> FLUSH TABLES WITH READ LOCK; 记录二进制日志文件及事件位置 mysql> FLUSH LOGS; mysql> S ...