tensorflow的广播机制
TensorFlow支持广播机制(Broadcast),可以广播元素间操作(elementwise operations)。正常情况下,当你想要进行一些操作如加法,乘法时,你需要确保操作数的形状是相匹配的,如:你不能将一个具有形状[3, 2]的张量和一个具有[3,4]形状的张量相加。但是,这里有一个特殊情况,那就是当你的其中一个操作数是一个具有单独维度(singular dimension)的张量的时候,TF会隐式地在它的单独维度方向填满(tile),以确保和另一个操作数的形状相匹配。所以,对一个[3,2]的张量和一个[3,1]的张量相加在TF中是合法的。(译者:这个机制继承自numpy的广播功能。其中所谓的单独维度就是一个维度为1,或者那个维度缺失)
import tensorflow as tf a = tf.constant([[1., 2.], [3., 4.]])
b = tf.constant([[1.], [2.]])
# c = a + tf.tile(b, [1, 2])
c = a + b
广播机制允许我们在隐式情况下进行填充(tile),而这可以使得我们的代码更加简洁,并且更有效率地利用内存,因为我们不需要另外储存填充操作的结果。一个可以表现这个优势的应用场景就是在结合具有不同长度的特征向量的时候。为了拼接具有不同长度的特征向量,我们一般都先填充输入向量,拼接这个结果然后进行之后的一系列非线性操作等。这是一大类神经网络架构的共同套路(common pattern)
a = tf.random_uniform([5, 3, 5])
b = tf.random_uniform([5, 1, 6]) # concat a and b and apply nonlinearity
tiled_b = tf.tile(b, [1, 3, 1])
c = tf.concat([a, tiled_b], 2)
d = tf.layers.dense(c, 10, activation=tf.nn.relu)
但是这个可以通过广播机制更有效地完成。我们利用事实f(m(x+y))=f(mx+my)f(m(x+y))=f(mx+my),简化我们的填充操作。因此,我们可以分离地进行这个线性操作,利用广播机制隐式地完成拼接操作。
pa = tf.layers.dense(a, 10, activation=None)
pb = tf.layers.dense(b, 10, activation=None)
d = tf.nn.relu(pa + pb)
事实上,这个代码足够通用,并且可以在具有抽象形状(arbitrary shape)的张量间应用:
def merge(a, b, units, activation=tf.nn.relu):
pa = tf.layers.dense(a, units, activation=None)
pb = tf.layers.dense(b, units, activation=None)
c = pa + pb
if activation is not None:
c = activation(c)
return c
一个更为通用函数形式如上所述:
目前为止,我们讨论了广播机制的优点,但是同样的广播机制也有其缺点,隐式假设几乎总是使得调试变得更加困难,考虑下面的例子:
a = tf.constant([[1.], [2.]])
b = tf.constant([1., 2.])
c = tf.reduce_sum(a + b)
你猜这个结果是多少?如果你说是6,那么你就错了,答案应该是12.这是因为当两个张量的阶数不匹配的时候,在进行元素间操作之前,TF将会自动地在更低阶数的张量的第一个维度开始扩展,所以这个加法的结果将会变为[[2, 3], [3, 4]],所以这个reduce的结果是12.
(译者:答案详解如下,第一个张量的shape为[2, 1],第二个张量的shape为[2,]。因为从较低阶数张量的第一个维度开始扩展,所以应该将第二个张量扩展为shape=[2,2],也就是值为[[1,2], [1,2]]。第一个张量将会变成shape=[2,2],其值为[[1, 1], [2, 2]]。)
解决这种麻烦的方法就是尽可能地显示使用。我们在需要reduce某些张量的时候,显式地指定维度,然后寻找这个bug就会变得简单:
a = tf.constant([[1.], [2.]])
b = tf.constant([1., 2.])
c = tf.reduce_sum(a + b, 0)
这样,c的值就是[5, 7],我们就容易猜到其出错的原因。一个更通用的法则就是总是在reduce操作和在使用tf.squeeze
中指定维度。
tensorflow的广播机制的更多相关文章
- numpy和tensorflow中的广播机制
广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...
- [开发技巧]·Numpy广播机制的深入理解与应用
[开发技巧]·Numpy广播机制的深入理解与应用 1.问题描述 我们在使用Numpy进行数据的处理时,经常会用到广播机制来简化操作,例如在所有元素都加上一个数,或者在某些纬度上作相同的操作.广播机制很 ...
- numpy中的广播机制
广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...
- Android随笔之——Android广播机制Broadcast详解
在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理.这个广播跟我们传统意义中的电台广播有些相似之处.之所以叫做广播,就 ...
- Android广播机制的深入学习
部分内容转载自http://www.cnblogs.com/lwbqqyumidi/p/4168017.html 1.Android广播机制概述 Android广播分为两个方面:广播发送者和广播接收者 ...
- Android总结篇系列:Android广播机制
1.Android广播机制概述 Android广播分为两个方面:广播发送者和广播接收者,通常情况下,BroadcastReceiver指的就是广播接收者(广播接收器).广播作为Android组件间的通 ...
- 九、Android学习第八天——广播机制与WIFI网络操作(转)
(转自:http://wenku.baidu.com/view/af39b3164431b90d6c85c72f.html) 九.Android学习第八天——广播机制与WIFI网络操作 今天熟悉了An ...
- Android 中的消息传递,详解广播机制
--------------------------------------广播机制简介--------------------------------------------- Android中的广 ...
- Android广播机制简介
为什么说Android中的广播机制更加灵活呢?这是因为Android中的每个应用程序都可以对自己感兴趣的广播进行注册,这样该程序就只会接收到自己所关心的广播内容,这些广播可能是来自于系统的,也可能是来 ...
随机推荐
- 搭建单机版的kafka
搭建单机版的kafka
- ansible-playbook流程控制-when条件判断
1. ansible-playbook添加判断 when相当于shell脚本里的if 判断,when语句就是用来实现这个功能的,它是一个jinja2的语法,但是不需要双大括号,用法很简单 1 ...
- linux内核输入子系统分析
1.为何引入input system? 以前我们写一些输入设备(键盘.鼠标等)的驱动都是采用字符设备.混杂设备处理的.问题由此而来,Linux开源社区的大神们看到了这大量输入设备如此分散不堪,有木有可 ...
- CSP-S2020AFO记
2020-10.11 考初赛辣. 选择题考了一堆时间复杂度,一个不会(卒) 我寻思这01背包哪里能用贪心? 啊,这,这,这手写快排竟如此简单,手写取Max,手写队列,两个字符串颠来倒去,竟活到爆! 震 ...
- spring boot:用swagger3生成接口文档,支持全局通用参数(swagger 3.0.0 / spring boot 2.3.2)
一,什么是swagger? 1, Swagger 是一个规范和完整的文档框架, 用于生成.描述.调用和可视化 RESTful 风格的 Web 服务文档 官方网站: https://swagger.i ...
- Java9系列第7篇:Java.util.Optional优化与增强
我计划在后续的一段时间内,写一系列关于java 9的文章,虽然java 9 不像Java 8或者Java 11那样的核心java版本,但是还是有很多的特性值得关注.期待您能关注我,我将把java 9 ...
- 【Azure媒体服务 Azure Media Service】Azure Media Service中Stream Endpoint 说明 (流式处理终结点)
Azure 媒体服务是一个基于云的媒体工作流平台,用于生成需要编码.打包.内容保护和直播活动广播的解决方案. 在视频的直播,点播方案中,媒体服务的架构主要由三部分构成: 推流端,把本地视频或直播内容推 ...
- Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs
这篇论文试图将GAT应用于KG任务中,但是问题是知识图谱中实体与实体之间关系并不相同,因此结构信息不再是简单的节点与节点之间的相邻关系.这里进行了一些小的trick进行改进,即在将实体特征拼接在一起的 ...
- js扩展方法(数组不重复推入)
扩展方法是一个很有趣的东西. 使用prototype在原始的类型上添加自己需要的方法.方便在一些常用的情况下使用,比如说字符串的String.trim()清除字符串前后的空格(当然这个方法内置已经有了 ...
- IDEA操作git的一些常用技巧
转自:https://blog.csdn.net/ck4438707/article/details/53455962 Git原理以后会分章节介绍,本次主要说一下intellij怎样操作git.int ...