codeforces 1036B - Diagonal Walking v.2【思维+构造】
题目:戳这里
题意:起点(0,0),终点(n,m),走k步,可以走8个方向,问能不能走到,能走到的话最多能走多少个斜步。
解题思路:起点是固定的,我们主要分析终点。题目要求走最多的斜步,斜步很明显有一个性质就是不会改变n和m的相对奇偶性。就是走斜步的话,n和m要么+1要么-1,如果一开始n和m奇偶性不同,那么只走斜步最后奇偶性怎么都不会相同。因为起点始终是(0,0),所以如果终点(n,m)的n和m奇偶性不同,那么肯定要走一个直步,而且只需要走一次直步。为什么只需要一次直步呢,我们可以随便画一条斜线,可以发现如果给一次走直步的机会,那么这条斜线上任意点的上下左右我们都可以到达。
也就是说,足够的斜步,可以让我们从(0,0)到达所有n与m奇偶性相同的点。再加上一个直步的话,就可以到达所有点了。而如果(n,m)本身奇偶性相同,但是与k不同,那么就是从起点到达(n,m)后,如果只走斜步,是没法刚好返回终点的。此时最优的方法就是把一个斜步化成两个直步,用来改变k与(n,m)的奇偶关系。
总结起来就是当n与m奇偶性不同的时候,--n,--k,否则--n,--m,k-=2。
判断k>=n是否成立,不成立说明走不到,成立直接输出k。
附ac代码:
1 #include<bits/stdc++.h>
2 using namespace std;
3 const int maxn = 1e3 + 10;
4 typedef long long ll;
5 int nu[maxn][11];
6 int ans[2][555];
7 void sp(ll *a, ll *b)
8 {
9 *a = *a ^ *b;
10 *b = *a ^ *b;
11 *a = *a ^ *b;
12 }
13 int main()
14 {
15 int q;
16 scanf("%d", &q);
17 ll n, m, k;
18 while(q--)
19 {
20 scanf("%lld %lld %lld", &n, &m, &k);
21 if(n < m)
22 {
23 sp(&n, &m);
24 }
25 // printf("%lld %lld\n", n, m);
26 if((n&1) != (m&1))
27 {
28 --n;
29 --k;
30 }
31 else if((n&1) != (k&1))
32 {
33 n -= 1;
34 m -= 1;
35 k -= 2;
36 }
37 if(k >= n)
38 {
39 printf("%lld\n", k);
40 }
41 else
42 {
43 puts("-1");
44 }
45 }
46 return 0;
47 }
codeforces 1036B - Diagonal Walking v.2【思维+构造】的更多相关文章
- CF 1036B Diagonal Walking v.2——思路
题目:http://codeforces.com/contest/1036/problem/B 比赛时只能想出不合法的情况还有走到终点附近的方式. 设n<m,不合法就是m<k.走到终点方式 ...
- Diagonal Walking v.2 CodeForces - 1036B (思维,贪心)
Diagonal Walking v.2 CodeForces - 1036B Mikhail walks on a Cartesian plane. He starts at the point ( ...
- Codeforces Round #501 (Div. 3) D. Walking Between Houses (思维,构造)
题意:一共有\(n\)个房子,你需要访问\(k\)次,每次访问的距离是\(|x-y|\),每次都不能停留,问是否能使访问的总距离为\(s\),若能,输出\(YES\)和每次访问的房屋,反正输出\(NO ...
- CF 1036 B Diagonal Walking v.2 —— 思路
题目:http://codeforces.com/contest/1036/problem/B 题意:从 (0,0) 走到 (n,m),每一步可以向八个方向走一格,问恰好走 k 步能否到达,能到达则输 ...
- B. Diagonal Walking v.2
链接 [https://i.cnblogs.com/EditPosts.aspx?opt=1] 题意 二维平面从原点出发k步,要到达的点(x,y),每个位置可以往8个方位移动,问到达目的地最多可以走多 ...
- hdu4671 思维构造
pid=4671">http://acm.hdu.edu.cn/showproblem.php? pid=4671 Problem Description Makomuno has N ...
- 思维/构造 HDOJ 5353 Average
题目传送门 /* 思维/构造:赛后补的,当时觉得3题可以交差了,没想到这题也是可以做的.一看到这题就想到了UVA_11300(求最小交换数) 这题是简化版,只要判断行不行和行的方案就可以了,做法是枚举 ...
- A Mist of Florescence CodeForces - 989C(思维构造)
题意: 让你构造一个图,使得A,B,C,D的个数为给定的个数,上下左右连通的算一个. 哎呀 看看代码就懂了..emm..很好懂的 #include <bits/stdc++.h> usin ...
- Educational Codeforces Round 53C(二分,思维|构造)
#include<bits/stdc++.h>using namespace std;const int N=1e6+6;int x[N],y[N];int sx,sy,n;char s[ ...
随机推荐
- 1.2V转3V芯片,电路图很少就三个元件
1.2V的镍氢电池由于稳定高,应用产品也是很广,但是由于电压低,需要1.2V转3V芯片,来将1.2V的电压升压转3V,稳定输出供电. 一般性的1.2V转3V芯片,都是用PW5100比较多,固定输出电压 ...
- three.js cannon.js物理引擎地形生成器和使用指针锁定控件
今天郭先生说一说使用cannon.js物理引擎绘制地形和使用指针锁定控件.效果如下图.线案例请点击博客原文. 这里面的生成地形的插件和指针锁定控件也是cannon.js的作者schteppe封装的,当 ...
- elasticsearch-head:5连接elasticsearch 6.x无法显示浏览数据的解决方案
问题 在docker安装了elasticsearch-head:5和elasticsearch:6.3.2 打开界面连接es时发现数据无法展示. 解决方案 因docker使用的版本问题,可能名称略有变 ...
- Java并发包源码学习系列:阻塞队列实现之ArrayBlockingQueue源码解析
目录 ArrayBlockingQueue概述 类图结构及重要字段 构造器 出队和入队操作 入队enqueue 出队dequeue 阻塞式操作 E take() 阻塞式获取 void put(E e) ...
- Connection Manager简称connman
ConnMan Connection Manager简称connman,connman是使用d-bus做为进程间通信机制来管理Linux网络链接的一种软件.在connman的d-bus接口中,有 ...
- 我的刷题单(8/37)(dalao珂来享受切题的快感
P2324 [SCOI2005]骑士精神 CF724B Batch Sort CF460C Present CF482A Diverse Permutation CF425A Sereja and S ...
- Prometheus+Grafana监控SpringBoot
Prometheus+Grafana监控SpringBoot 一.Prometheus监控SpringBoot 1.1 pom.xml添加依赖 1.2 修改application.yml配置文件 1. ...
- 并发编程(Process对象的join方法)(
一. Process对象的join方法 在主进程运行过程中如果想并发地执行其他的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况 情况一:在主进程的任务与子进程的任务彼此独立的情况下 ...
- MVC框架,SpringMVC
文章目录 使用Controller URL映射到方法 @RequestMapping URL路径匹配 HTTP method匹配 consumes和produces params和header匹配 方 ...
- java日期
// 完整显示日期时间 String str = (new SimpleDateFormat("yyyy-MM-dd HH:mm:ss:SSS")).format(new Date ...