内存耗尽后Redis会发生什么
前言
作为一台服务器来说,内存并不是无限的,所以总会存在内存耗尽的情况,那么当 Redis 服务器的内存耗尽后,如果继续执行请求命令,Redis 会如何处理呢?
内存回收
使用Redis 服务时,很多情况下某些键值对只会在特定的时间内有效,为了防止这种类型的数据一直占有内存,我们可以给键值对设置有效期。Redis 中可以通过 4 个独立的命令来给一个键设置过期时间:
expire key ttl:将key值的过期时间设置为ttl秒。pexpire key ttl:将key值的过期时间设置为ttl毫秒。expireat key timestamp:将key值的过期时间设置为指定的timestamp秒数。pexpireat key timestamp:将key值的过期时间设置为指定的timestamp毫秒数。
PS:不管使用哪一个命令,最终 Redis 底层都是使用 pexpireat 命令来实现的。另外,set 等命令也可以设置 key 的同时加上过期时间,这样可以保证设值和设过期时间的原子性。
设置了有效期后,可以通过 ttl 和 pttl 两个命令来查询剩余过期时间(如果未设置过期时间则下面两个命令返回 -1,如果设置了一个非法的过期时间,则都返回 -2):
ttl key返回key剩余过期秒数。pttl key返回key剩余过期的毫秒数。
过期策略
如果将一个过期的键删除,我们一般都会有三种策略:
- 定时删除:为每个键设置一个定时器,一旦过期时间到了,则将键删除。这种策略对内存很友好,但是对
CPU不友好,因为每个定时器都会占用一定的CPU资源。 - 惰性删除:不管键有没有过期都不主动删除,等到每次去获取键时再判断是否过期,如果过期就删除该键,否则返回键对应的值。这种策略对内存不够友好,可能会浪费很多内存。
- 定期扫描:系统每隔一段时间就定期扫描一次,发现过期的键就进行删除。这种策略相对来说是上面两种策略的折中方案,需要注意的是这个定期的频率要结合实际情况掌控好,使用这种方案有一个缺陷就是可能会出现已经过期的键也被返回。
在 Redis 当中,其选择的是策略 2 和策略 3 的综合使用。不过 Redis 的定期扫描只会扫描设置了过期时间的键,因为设置了过期时间的键 Redis 会单独存储,所以不会出现扫描所有键的情况:
typedef struct redisDb {
dict *dict; //所有的键值对
dict *expires; //设置了过期时间的键值对
dict *blocking_keys; //被阻塞的key,如客户端执行BLPOP等阻塞指令时
dict *watched_keys; //WATCHED keys
int id; //Database ID
//... 省略了其他属性
} redisDb;
8 种淘汰策略
假如 Redis 当中所有的键都没有过期,而且此时内存满了,那么客户端继续执行 set 等命令时 Redis 会怎么处理呢?Redis 当中提供了不同的淘汰策略来处理这种场景。
首先 Redis 提供了一个参数 maxmemory 来配置 Redis 最大使用内存:
maxmemory <bytes>
或者也可以通过命令 config set maxmemory 1GB 来动态修改。
如果没有设置该参数,那么在 32 位的操作系统中 Redis 最多使用 3GB 内存,而在 64 位的操作系统中则不作限制。
Redis 中提供了 8 种淘汰策略,可以通过参数 maxmemory-policy 进行配置:
| 淘汰策略 | 说明 |
|---|---|
| volatile-lru | 根据 LRU 算法删除设置了过期时间的键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
| allkeys-lru | 根据 LRU 算法删除所有的键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
| volatile-lfu | 根据 LFU 算法删除设置了过期时间的键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
| allkeys-lfu | 根据 LFU 算法删除所有的键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
| volatile-random | 随机删除设置了过期时间的键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
| allkeys-random | 随机删除所有键,直到腾出可用空间。如果没有可删除的键对象,且内存还是不够用时,则报错 |
| volatile-ttl | 根据键值对象的 ttl 属性, 删除最近将要过期数据。 如果没有,则直接报错 |
| noeviction | 默认策略,不作任何处理,直接报错 |
PS:淘汰策略也可以直接使用命令 config set maxmemory-policy <策略> 来进行动态配置。
LRU 算法
LRU 全称为:Least Recently Used。即:最近最长时间未被使用。这个主要针对的是使用时间。
Redis 改进后的 LRU 算法
在 Redis 当中,并没有采用传统的 LRU 算法,因为传统的 LRU 算法存在 2 个问题:
- 需要额外的空间进行存储。
- 可能存在某些
key值使用很频繁,但是最近没被使用,从而被LRU算法删除。
为了避免以上 2 个问题,Redis 当中对传统的 LRU 算法进行了改造,通过抽样的方式进行删除。
配置文件中提供了一个属性 maxmemory_samples 5,默认值就是 5,表示随机抽取 5 个 key 值,然后对这 5 个 key 值按照 LRU 算法进行删除,所以很明显,key 值越大,删除的准确度越高。
对抽样 LRU 算法和传统的 LRU 算法,Redis 官网当中有一个对比图:
浅灰色带是被删除的对象。
灰色带是未被删除的对象。
绿色是添加的对象。

左上角第一幅图代表的是传统 LRU 算法,可以看到,当抽样数达到 10 个(右上角),已经和传统的 LRU 算法非常接近了。
Redis 如何管理热度数据
前面我们讲述字符串对象时,提到了 redisObject 对象中存在一个 lru 属性:
typedef struct redisObject {
unsigned type:4;//对象类型(4位=0.5字节)
unsigned encoding:4;//编码(4位=0.5字节)
unsigned lru:LRU_BITS;//记录对象最后一次被应用程序访问的时间(24位=3字节)
int refcount;//引用计数。等于0时表示可以被垃圾回收(32位=4字节)
void *ptr;//指向底层实际的数据存储结构,如:SDS等(8字节)
} robj;
lru 属性是创建对象的时候写入,对象被访问到时也会进行更新。正常人的思路就是最后决定要不要删除某一个键肯定是用当前时间戳减去 lru,差值最大的就优先被删除。但是 Redis 里面并不是这么做的,Redis 中维护了一个全局属性 lru_clock,这个属性是通过一个全局函数 serverCron 每隔 100 毫秒执行一次来更新的,记录的是当前 unix 时间戳。
最后决定删除的数据是通过 lru_clock 减去对象的 lru 属性而得出的。那么为什么 Redis 要这么做呢?直接取全局时间不是更准确吗?
这是因为这么做可以避免每次更新对象的 lru 属性的时候可以直接取全局属性,而不需要去调用系统函数来获取系统时间,从而提升效率(Redis 当中有很多这种细节考虑来提升性能,可以说是对性能尽可能的优化到极致)。
不过这里还有一个问题,我们看到,redisObject 对象中的 lru 属性只有 24 位,24 位只能存储 194 天的时间戳大小,一旦超过 194 天之后就会重新从 0 开始计算,所以这时候就可能会出现 redisObject 对象中的 lru 属性大于全局的 lru_clock 属性的情况。
正因为如此,所以计算的时候也需要分为 2 种情况:
- 当全局
lruclock>lru,则使用lruclock-lru得到空闲时间。 - 当全局
lruclock<lru,则使用lruclock_max(即194天) -lru+lruclock得到空闲时间。
需要注意的是,这种计算方式并不能保证抽样的数据中一定能删除空闲时间最长的。这是因为首先超过 194 天还不被使用的情况很少,再次只有 lruclock 第 2 轮继续超过 lru 属性时,计算才会出问题。
比如对象 A 记录的 lru 是 1 天,而 lruclock 第二轮都到 10 天了,这时候就会导致计算结果只有 10-1=9 天,实际上应该是 194+10-1=203 天。但是这种情况可以说又是更少发生,所以说这种处理方式是可能存在删除不准确的情况,但是本身这种算法就是一种近似的算法,所以并不会有太大影响。
LFU 算法
LFU 全称为:Least Frequently Used。即:最近最少频率使用,这个主要针对的是使用频率。这个属性也是记录在redisObject 中的 lru 属性内。
当我们采用 LFU 回收策略时,lru 属性的高 16 位用来记录访问时间(last decrement time:ldt,单位为分钟),低 8 位用来记录访问频率(logistic counter:logc),简称 counter。
访问频次递增
LFU 计数器每个键只有 8 位,它能表示的最大值是 255,所以 Redis 使用的是一种基于概率的对数器来实现 counter 的递增。r
给定一个旧的访问频次,当一个键被访问时,counter 按以下方式递增:
- 提取
0和1之间的随机数R。 counter- 初始值(默认为5),得到一个基础差值,如果这个差值小于0,则直接取0,为了方便计算,把这个差值记为baseval。- 概率
P计算公式为:1/(baseval * lfu_log_factor + 1)。 - 如果
R < P时,频次进行递增(counter++)。
公式中的 lfu_log_factor 称之为对数因子,默认是 10 ,可以通过参数来进行控制:
lfu_log_factor 10
下图就是对数因子 lfu_log_factor 和频次 counter 增长的关系图:

可以看到,当对数因子 lfu_log_factor 为 100 时,大概是 10M(1000万) 次访问才会将访问 counter 增长到 255,而默认的 10 也能支持到 1M(100万) 次访问 counter 才能达到 255 上限,这在大部分场景都是足够满足需求的。
访问频次递减
如果访问频次 counter 只是一直在递增,那么迟早会全部都到 255,也就是说 counter 一直递增不能完全反应一个 key 的热度的,所以当某一个 key 一段时间不被访问之后,counter 也需要对应减少。
counter 的减少速度由参数 lfu-decay-time 进行控制,默认是 1,单位是分钟。默认值 1 表示:N 分钟内没有访问,counter 就要减 N。
lfu-decay-time 1
具体算法如下:
- 获取当前时间戳,转化为分钟后取低
16位(为了方便后续计算,这个值记为now)。 - 取出对象内的
lru属性中的高16位(为了方便后续计算,这个值记为ldt)。 - 当
lru>now时,默认为过了一个周期(16位,最大65535),则取差值65535-ldt+now:当lru<=now时,取差值now-ldt(为了方便后续计算,这个差值记为idle_time)。 - 取出配置文件中的
lfu_decay_time值,然后计算:idle_time / lfu_decay_time(为了方便后续计算,这个值记为num_periods)。 - 最后将
counter减少:counter - num_periods。
看起来这么复杂,其实计算公式就是一句话:取出当前的时间戳和对象中的 lru 属性进行对比,计算出当前多久没有被访问到,比如计算得到的结果是 100 分钟没有被访问,然后再去除配置参数 lfu_decay_time,如果这个配置默认为 1也即是 100/1=100,代表 100 分钟没访问,所以 counter 就减少 100。
总结
本文主要介绍了 Redis 过期键的处理策略,以及当服务器内存不够时 Redis 的 8 种淘汰策略,最后介绍了 Redis 中的两种主要的淘汰算法 LRU 和 LFU。
内存耗尽后Redis会发生什么的更多相关文章
- 【故障公告】redis内存耗尽造成博客后台无法保存
非常抱歉,今天上午11:00~11:30左右,由于 redis 服务器内存耗尽造成博客后台故障--保存博文时总是提示"请求太过频繁,请稍后再试",由此给您带来麻烦,请您谅解. 由于 ...
- redis作为缓存场景使用,内存耗尽时,突然出现大量的逐出,在这个逐出的过程中阻塞正常的读写请求,导致 redis 短时间不可用
redis 突然大量逐出导致读写请求block 内容目录: 现象 背景 原因 解决方案 ref 现象 redis作为缓存场景使用,内存耗尽时,突然出现大量的逐出,在这个逐出的过程中阻塞正常的读写请 ...
- Allowed memory size of 134217728 bytes exhausted解决办法(php内存耗尽报错)【简记】
报错: PHP Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to allocate 72 bytes) i ...
- 关闭swap的危害——一旦内存耗尽,由于没有SWAP的缓冲,系统会立即开始OOM
SWAP的罪与罚 发表于2012-11-08 说个案例:一台Apache服务器,由于其MaxClients参数设置过大,并且恰好又碰到访问量激增,结果内存被耗光,从而引发SWAP,进而负载攀升,最终导 ...
- Linux下php-fpm进程过多导致内存耗尽问题
这篇文章主要介绍了解决Linux下php-fpm进程过多导致内存耗尽问题,需要的朋友可以参考下 最近,发现个人博客的Linux服务器,数据库服务经常挂掉,导致需要重启,才能正常访问,极其恶心,于是 ...
- webdriver.close() quit() 批量kill进程 内存耗尽的解决办法
问题现象: shell窗口卡,换IP的登录窗,不开: 猜测: 内存耗尽 spider_url,py driver = webdriver.PhantomJS( executable_path='/us ...
- Linux Redis 重启数据丢失解决方案,Linux重启后Redis数据丢失解决方
Linux Redis 重启数据丢失解决方案,Linux重启后Redis数据丢失解决方案 >>>>>>>>>>>>>> ...
- 服务器断电后 redis重启后启动不起来
服务器断电后 redis 重启后启动不起来 原因:db持久化失败 1. 先查询redis的进程 ps -ef|grep redis 2. 查询redis的缓存文件在哪 whereis dump.rdb ...
- 早期malloc分配时,如果内存耗尽分配不出来,会直接返回NULL。现在分配不出来,直接抛出异常(可使用nothrow关键字)
今天和同事review代码时,发现这样的一段代码: Manager * pManager = new Manager(); if(NULL == pManager) { //记录日志 return f ...
随机推荐
- C# 正则表达式 -- 复习
符号解释: \ 特殊的字符,转义 ^ 匹配输入的字符串的开始位置 $ 匹配输入的字符串的结束位置 * 匹配0次或多次,等价于{0,} + 匹配1次或多次,等价于{1,} ? 匹配0次或1次,等价于{0 ...
- Bagging和Boosting的介绍及对比
"团结就是力量"这句老话很好地表达了机器学习领域中强大「集成方法」的基本思想.总的来说,许多机器学习竞赛(包括 Kaggle)中最优秀的解决方案所采用的集成方法都建立在一个这样的假 ...
- PHP 框架之一Laravel
Laravel: Laravel The phpFramework for Web Artisans and one of the best php framework in year 2014. L ...
- 给定HDFS中某一个目录,输出该目录下的所有文件的读写权限、大小、创建时间、路径等信息,如果该文件是目录,则递归输出该目录下所有文件相关信息。
1 import java.text.SimpleDateFormat; 2 import org.apache.hadoop.fs.*; 3 4 public class E_RecursiveRe ...
- Server:www121 Server:www120 Server:NWS_SP 内容被散列,并在响应中放入Etag When to Use Entity-Tags and Last-Modified Dates
1 Request URL:http://www.biyao.com/minisite/bzzx 2 Request Method:GET 3 Status Code:200 OK 4 Remote ...
- (十七)整合 Zookeeper组件,管理架构中服务协调
整合 Zookeeper组件,管理架构中服务协调 1.Zookeeper基础简介 1.1 基本理论 1.2 应用场景 2.安全管理操作 2.1 操作权限 2.2 认证方式: 2.3 Digest授权流 ...
- MySql(四)SQL注入
MySql(四)SQL注入 一.SQL注入简介 1.1 SQL注入流程 1.2 SQL注入的产生过程 1.2.1 构造动态字符串 转义字符处理不当 类型处理不当 查询语句组装不当 错误处理不当 多个提 ...
- svn 启动项目报错,项目被lock
问题描述 问题解决 (一)Eclipse SVN 插件处理 (二)SVN 客户端处理 (三)删除lock文件 问题描述 在使用开发工具开发项目时(如Eclipse),在做项目的中途,有时候Eclips ...
- hadoop(集群)完全分布式环境搭建
一,环境 主节点一台: ubuntu desktop 16.04 zhoujun 172.16.12.1 从节点(slave)两台:ubuntu server 16.04 hadoop2 ...
- OpenStack (云计算与openstck简介)
云计算 什么是云计算 云计算是一种按使用量付费的模式,这种模式提供可用的,便捷的,按需的网络访问,通过互联网进入可配置的计算资源共享池(资源包括,计算,存储,应用软件和服务) 云计算的特征 易于管理: ...