AcWing 247. 亚特兰蒂斯 (线段树,扫描线,离散化)

- 题意:给你\(n\)个矩形,求矩形并的面积.
- 题解:我们建立坐标轴,然后可以对矩形的横坐标进行排序,之后可以遍历这些横坐标,这个过程可以想像成是一条线从左往右扫过x坐标轴,假如这条线是第一次扫过矩形的宽(长)的话,我们就可以在\(y\)轴上对应的区间打上标记,每次枚举的面积就是当前横坐标和上次横坐标的差值乘上目前\(y\)轴上所有打上标记的区间长度\((seg[i].x-seg[i-1].x)*tr[1].len\),y轴上的区间情况我们可以通过线段树来维护.
- 代码:
#include <bits/stdc++.h>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
#define rep(a,b,c) for(int a=b;a<=c;++a)
#define per(a,b,c) for(int a=b;a>=c;--a)
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b) {return a/gcd(a,b)*b;}
struct Segment{
double x,y1,y2;
int k;
bool operator < (const Segment & tmp) const {
return x<tmp.x;
}
}seg[N*2];
struct Node{
int l,r;
int cnt;
double len;
}tr[8*N];
vector<double> ys;
void push_up(int u){
if(tr[u].cnt) tr[u].len=ys[tr[u].r+1]-ys[tr[u].l];
else if(tr[u].l!=tr[u].r){
tr[u].len=tr[u<<1].len+tr[u<<1|1].len;
}
else tr[u].len=0; //叶子节点并且没有标记
}
void build(int u,int l,int r){
tr[u].l=l;
tr[u].r=r;
if(l==r) return;
int mid=(l+r)>>1;
build(u<<1,l,mid);
build(u<<1|1,mid+1,r);
}
void modify(int u,int l,int r,int k){
if(tr[u].l>=l && tr[u].r<=r){
tr[u].cnt+=k;
push_up(u);
}
else{
int mid=(tr[u].l+tr[u].r)>>1;
if(l<=mid) modify(u<<1,l,r,k);
if(r>mid) modify(u<<1|1,l,r,k);
push_up(u);
}
}
int main() {
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
int n;
int T=1;
while(cin>>n){
if(n==0) break;
ys.clear();
int j=0;
rep(i,0,n-1){
double x1,y1,x2,y2;
cin>>x1>>y1>>x2>>y2;
seg[j++]={x1,y1,y2,1};
seg[j++]={x2,y1,y2,-1};
ys.pb(y1),ys.pb(y2);
}
sort(ys.begin(),ys.end());
ys.erase(unique(ys.begin(),ys.end()),ys.end());
build(1,0,ys.size()-2);
sort(seg,seg+2*n);
double res=0;
rep(i,0,2*n-1){ //枚举横坐标 tr[1].len就表示纵坐标区间之和
if(i>0) res+=tr[1].len*(seg[i].x-seg[i-1].x);
int pos1=lower_bound(ys.begin(),ys.end(),seg[i].y1)-ys.begin();
int pos2=lower_bound(ys.begin(),ys.end(),seg[i].y2)-ys.begin();
modify(1,pos1,pos2-1,seg[i].k);
}
cout<<"Test case #"<<T++<<'\n';
cout<<"Total explored area: "<<fixed<<setprecision(2)<<res<<"\n\n";
}
return 0;
}
AcWing 247. 亚特兰蒂斯 (线段树,扫描线,离散化)的更多相关文章
- hdu1542 Atlantis (线段树+扫描线+离散化)
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- POJ-1151-Atlantis(线段树+扫描线+离散化)[矩形面积并]
题意:求矩形面积并 分析:使用线段树+扫描线...因为坐标是浮点数的,因此还需要离散化! 把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,用col表示该区间有多少个下边,sum代表该区 ...
- poj1151 Atlantis (线段树+扫描线+离散化)
有点难,扫描线易懂,离散化然后线段树处理有点不太好理解. 因为这里是一个区间,所有在线段树中更新时,必须是一个长度大于1的区间才是有效的,比如[l,l]这是一根线段,而不是区间了. AC代码 #inc ...
- hdu 4419 线段树 扫描线 离散化 矩形面积
//离散化 + 扫描线 + 线段树 //这个线段树跟平常不太一样的地方在于记录了区间两个信息,len[i]表示颜色为i的被覆盖的长度为len[i], num[i]表示颜色i 『完全』覆盖了该区间几层. ...
- HDU 1542 Atlantis (线段树 + 扫描线 + 离散化)
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- HDU 1542 Atlantis(线段树扫描线+离散化求面积的并)
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- HDU 1255 覆盖的面积 (线段树+扫描线+离散化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 题意很清楚,就是让你求矩阵之间叠加层数大于1的矩形块的面积和. 因为n只有1000,所以我离散化 ...
- POJ 1177 Picture(线段树 扫描线 离散化 求矩形并面积)
题目原网址:http://poj.org/problem?id=1177 题目中文翻译: 解题思路: 总体思路: 1.沿X轴离散化建树 2.按Y值从小到大排序平行与X轴的边,然后顺序处理 如果遇到矩形 ...
- HDU3642 Get The Treasury —— 求矩形交体积 线段树 + 扫描线 + 离散化
题目链接:https://vjudge.net/problem/HDU-3642 Jack knows that there is a great underground treasury in a ...
随机推荐
- CSAPP:Lab0 -Docker搭建纯净Linux环境
1. 安装docker 在mac-os下我们可以利用homebrew很容易的安装docker. brew install docker 当然去官网下载也很容易 Empowering App Devel ...
- Trino总结
文章目录 1.Trino与Spark SQL的区别分析 2.Trino与Spark SQL解析过程对比 3.Trino基本概念 4.Trino架构 5.Trino SQL执行流程 6.Trino Ta ...
- C#高级编程第11版 - 第三章 索引
[1]3.1 创建及使用类 1.构造函数:构造函数的名字与类名相同: 使用 new 表达式创建类的对象或者结构(例如int)时,会调用其构造函数.并且通常初始化新对象的数据成员. 除非类是静态的,否则 ...
- Redis持久化之父子进程与写时复制
之所以将Linux底层的写时复制技术放在Redis篇幅下,是因为Redis进行RDB持久化时,BGSAVE(后面称之为"后台保存")会开辟一个子进程,将数据从内存写进磁盘,这儿我产 ...
- redis list 列表 查找 时间复杂度
http://redisbook.com/preview/intset/content.html 列表对象 列表对象的编码可以是 ziplist 或者 linkedlist . ziplistFind ...
- 支付回调地址 同步回调地址 异步回调地址 return_url和notify_url的区别
[微信支付]JSAPI支付开发者文档 https://pay.weixin.qq.com/wiki/doc/api/jsapi.php?chapter=9_16&index=10 退款结果通知 ...
- Python爬虫学习笔记(三)
Cookies: 以抓取https://www.yaozh.com/为例 Test1(不使用cookies): 代码: import urllib.request # 1.添加URL url = &q ...
- 在Centos7上安装Python+Selenium+Chrome+Chromedriver
1.下载Chrome 上一篇文章已经演示过了Python+Selenium+Firefox+Geckodriver安装步骤并通过自动化脚本打开百度 因此当前只需要安装Chrome和Chromedriv ...
- CF42A
题意 给定两个序列 a 和 b. 序列 a 中的各个数之间的比例可以得出一个 x . 当 b 中比例满足 a 中比例,即 \(b_1\):\(b_2\):\(b_3\)-- \(=\) \(a_1\) ...
- loj10006数列分段
题目描述 对于给定的一个长度为 N 的正整数数列 A,现要将其分成连续的若干段,并且每段和不超过 M(可以等于 M),问最少能将其分成多少段使得满足要求. 输入格式 第一行包含两个正整数 N,M表示了 ...