上文我们演示了使用NLog向ElasticSearch写日志的基本过程(输出的是普通文本日志),今天我们来看下如何向ES输出结构化日志、并利用Kibana中分析日志。

  • NLog输出结构化日志
  • ElasticSearch面向文档

什么是结构化日志?

当前互联网、物联网、大数据突飞猛进,软件越复杂,查找任何给定问题的起因就越困难(且成本更高)。

在实践中我们开发了各种规避、诊断应用程序错误行为的利器:

静态类型检查自动化测试事件探查器崩溃转储监视系统。但是记录程序执行步骤的日志仍然是事后诊断最丰富的数据源。

在日志分析时,小批量普通的文本对于人类很友好,但却很难从大量普通文本中快速定位、精准提取特定信息。

.....
[2018-04-07T13:45:56.789Z INF] https://example.com/api/warehouse,query reserve,took 100 ms
[2018-04-07T13:45:56.789Z INF] api/commitOrder,OrderId:9876543210,commit order took 50 ms
......
[2018-04-07T13:45:56.789Z INF] /login,user:Kenny,from ip_address:127.0.0.1,took 100 ms
......
[2018-04-07T13:45:56.789Z INF] https://example.com/api/warehouse,OrderId:9876543210,decrease reserve took 10000 ms
[2018-04-07T13:45:56.789Z INF] /api/creatNewOrder,OrderId:9876543210, create order took 100 ms
.....
  • 如果找到特定OrderId?
  • 如何找到哪些请求耗时较长(比如大于2S)?
  • 如何定位到该耗时请求处理管道中哪一段出现性能瓶颈?
  • 出现性能瓶颈的请求占比?

普通文本对人类友好,对于机器不友好。

结构化日志提出了Message template来解决日志对机器不友好的问题。

Messgae Template: 是一个与语言无关的规范,以对人类和机器友好的格式捕获、呈现结构化的日志事件。

var traceid = _.TraceIdentifier;
// 【锁定库存】 这个动作耗时较长
_logger.LogInformation("{TraceId},{endpoint},OrderId:{orderId},decrease reserve took {elasped} ms", traceid, "https://example.com/api/warehouse", 9876543210, 10000);

注意命名占位符,它们能如格式化字符串占位符{0}{1}一样占位,而且能将属性名称与每个匹配位置的消息数据相关联,如下图以json格式提取了关键消息。

消息模板的优势在于:既能保持普通文本的格式,又具备捕获结构化数据的能力(对机器友好)。


下面来完整输出、分析提交订单请求的日志:

利用NLog向ES输出结构化日志

NLog4.5引入结构化日志,支持Message Template, 在ASP.NET Core脚手架Startup文件--->Configure方法添加如下代码:

 app.MapWhen(_ => _.Request.Path.Value == "/" ,
appBuilder => appBuilder.Run(_ =>
{
var traceid = _.TraceIdentifier;
// 查询库存
_logger.LogInformation("{traceId},{endpoint},query reserve,took{elasped} ms", traceid, "https://example.com/api/warehouse", 100); // 创建订单
_logger.LogInformation("{traceId},{endpoint},OrderId:{orderId}, create order took {elasped} ms", traceid, "/api/creatNewOrder", 9876543210, 100); // 锁定库存
_logger.LogInformation("{traceId},{endpoint},OrderId:{orderId},decrease reserve took {elasped} ms", traceid, "https://example.com/api/warehouse", 9876543210, 10000); // 提交订单
_logger.LogInformation("{traceId},{endpoint},OrderId:{orderId},commit order took {elasped} ms", traceid, "api/commitOrder", 9876543210, 50); _.Response.StatusCode = StatusCodes.Status200OK;
_.Response.WriteAsync("Generate Order OK!");
return Task.CompletedTask;
}));

这里我们关注如何向ElasticSearch输出结构化日志,请务必将includeAllProperties="true",这样输出到ES的才会包含所有事件属性。

<target name="elastic" xsi:type="BufferingWrapper" flushTimeout="5000">
<target xsi:type="ElasticSearch" includeAllProperties="true" index="logstash-20200805" uri="${configsetting:item=ConnectionStrings.ElasticUrl}" />
</target>

Kibana中分析日志

这个订单请求,会产生6条日志(这里你也会看到日志的显示顺序可能不能如你所愿):

下面给出[锁定库存]日志ES文档, 文档上已经出现了关键的消息属性[traceId] [endpoint] [orderId] [elasped]

{
"_index": "logstash-20200805",
"_type": "logevent",
"_id": "emTivXMBwcdwe4RliB9f",
"_version": 1,
"_score": null,
"_source": {
"@timestamp": "2020-08-05T17:10:00.7170456+08:00",
"level": "Info",
"message": "2020-08-05 17:10:00.7170|INFO|EqidManager.Startup|0HM1P3TAGNJ5Q:00000001,https://example.com/api/warehouse,OrderId:9876543210,decrease reserve took 10000 ms",
"TraceId": "0HM1P3TAGNJ5Q:00000001",
"endpoint": "https://example.com/api/warehouse",
"orderId": 9876543210,
"elasped": 10000
},
"fields": {
"@timestamp": [
"2020-08-05T09:10:00.717Z"
]
},
"sort": [
1596618600717
]
}

通过Kibana界面我们可以便捷地完成如下分析:

  1. 通过{TraceId}找到某次请求所有日志
  2. 通过{elasped} >=10s 过滤出处理时长大于10s的阶段
  3. 通过{ordeid} 追踪该订单完整链路

    ......

总结

本文肝时较长(elasped>=10天)

  • 从常规诊断日志谈到[对机器友好,适用于分析的结构化日志],其中的核心是消息模板。
  • 再谈到我是如何利用NLog输出结构化日志,其中注意在NLog Target中设置includeAllProperties=true(默认是false), 摸索了很久
  • 最后在Kibana中演示便捷的分析结构化日志

干货周边

  1. [消息模板] https://messagetemplates.org/
  2. [如何利用NLog输出结构化日志] https://github.com/nlog/nlog/wiki/How-to-use-structured-logging
  3. [NLog to ES] https://github.com/markmcdowell/NLog.Targets.ElasticSearch
  4. [TraceId]
  5. Logging with ElasticSearch, Kibana, ASP.NET Core and Docker

如何利用NLog输出结构化日志,并在Kibana优雅分析日志?的更多相关文章

  1. 利用Mongoose来结构化模式与验证

    Mongoose是一个文档对象模型(ODM)库,为MongoDB Node.js原生驱动程序提供更多的功能. 把结构化的模式应用到一个MongoDB集合,提供了验证和类型转换的好处 Mongoose通 ...

  2. [AI开发]基于DeepStream的视频结构化解决方案

    视频结构化的定义 利用深度学习技术实时分析视频中有价值的内容,并输出结构化数据.相比数据库中每条结构化数据记录,视频.图片.音频等属于非结构化数据,计算机程序不能直接识别非结构化数据,因此需要先将这些 ...

  3. 视频结构化 AI 推理流程

    「视频结构化」是一种 AI 落地的工程化实现,目的是把 AI 模型推理流程能够一般化.它输入视频,输出结构化数据,将结果给到业务系统去形成某些行业的解决方案. 换个角度,如果你想用摄像头来实现某些智能 ...

  4. 有效的结构化思维训练,MECE分析法

    MECE原则,表达精准分类与全面性的有效利器 结构化思维的本质就是逻辑,其目的在于对问题的思考更完整.更有条理,它帮助我们一个一个找到线头,理清思路,探求事物之间的相互联系.MECE分析法是一种结构化 ...

  5. Asp.Net Core中利用Seq组件展示结构化日志功能

    在一次.Net Core小项目的开发中,掌握的不够深入,对日志记录并没有好好利用,以至于一出现异常问题,都得跑动服务器上查看,那时一度怀疑自己肯定没学好,不然这一块日志不可能需要自己扒服务器日志来查看 ...

  6. .NET Core开发日志——结构化日志

    在.NET生态圈中,最早被广泛使用的日志库可能是派生自Java世界里的Apache log4net.而其后来者,莫过于NLog.Nlog与log4net相比,有一项较显著的优势,它支持结构化日志. 结 ...

  7. 结构化日志类库 ---- Serilog库

    在过去的几年中,结构化日志已经大受欢迎.而Serilog是 .NET 中最著名的结构化日志类库 ,我们提供了这份的精简指南来帮助你快速了解并运用它. 0. 内容 设定目标 认识Serilog 事件和级 ...

  8. [C#] 将NLog输出到RichTextBox,并在运行时动态修改日志级别过滤

    作者: zyl910 一.缘由 NLog是一个很好用的日志类库.利用它,可以很方便的将日志输出到 调试器.文件 等目标,还支持输出到窗体界面中的RichTextBox等目标. 而且它还支持在运行时修改 ...

  9. 探索ASP.Net Core 3.0系列六:ASP.NET Core 3.0新特性启动信息中的结构化日志

    前言:在本文中,我将聊聊在ASP.NET Core 3.0中细小的变化——启动时记录消息的方式进行小的更改. 现在,ASP.NET Core不再将消息直接记录到控制台,而是正确使用了logging 基 ...

随机推荐

  1. Scala 基础(十):Scala 函数式编程(二)基础(二)过程、惰性函数、异常

    1 过程 将函数的返回类型为Unit的函数称之为过程(procedure),如果明确函数没有返回值,那么等号可以省略 注意事项和细节说明 1)注意区分: 如果函数声明时没有返回值类型,但是有 = 号, ...

  2. MYSQL 之 JDBC(十四):批量处理JDBC语句提高处理效率

    1.当需要成批插入或者更新记录时.可以采用java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理.通常情况下比单独提交处理更有效率. 2.JDBC的批量处理语句包括下面两个方法: ad ...

  3. java IO流 (六) 其它的流的使用

    1. 标准的输入输出流:System.in:标准的输入流,默认从键盘输入System.out:标准的输出流,默认从控制台输出 修改默认的输入和输出行为:System类的setIn(InputStrea ...

  4. python 装饰器(二):装饰器基础(二)变量作用域规则,闭包,nonlocal声明

    变量作用域规则 在示例 7-4 中,我们定义并测试了一个函数,它读取两个变量的值:一个是局部变量 a,是函数的参数:另一个是变量 b,这个函数没有定义它. >>> def f1(a) ...

  5. Ant-Design-Vue中关于Form组件的使用

    1.创建form表单的两种方式,不同的方式在js中创建表单的方式也不同 方式1:一般使用在搜索表单中,只需要双向绑定数据即可,那就使用这种方法即可 <template> <a-for ...

  6. C/C++中的 if(指针变量) 和 if(!指针变量)

    目录 if(指针变量) 代码演示 if(指针变量) 解读代码 if(!指针变量) 解读代码 总结 替代方案.推荐写法!!!!! if(指针变量) 当把一个指针作为条件表达式时,所要判断的条件实际上就是 ...

  7. Spring Boot 2.x基础教程:使用EhCache缓存集群

    上一篇我们介绍了在Spring Boot中整合EhCache的方法.既然用了ehcache,我们自然要说说它的一些高级功能,不然我们用默认的ConcurrentHashMap就好了.本篇不具体介绍Eh ...

  8. 【JVM之内存与垃圾回收篇】运行时数据区概述及线程

    运行时数据区概述及线程 前言 本节主要讲的是运行时数据区,也就是下图这部分,它是在类加载完成后的阶段 当我们通过前面的:类的加载-> 验证 -> 准备 -> 解析 -> 初始化 ...

  9. JS内存机制

    在看JS内存机制之前我们先来看一下JS是门什么样的语言,他又有哪些变量类型. 动静态,强弱类型 静态:在使用之前就需要确认其变量数据类型. 动态:在运行过程中需要检查数据类型. 强类型:不支持隐式类型 ...

  10. Windows电脑多个SSH Key管理.md

    笔者偏在阿里云,Github,开源中国上均存放一些私有项目代码,因此需要再Windows电脑上配置多个SSH Key 环境 操作系统:windows 7 Git 提示:Git 安装后就可以使用 Git ...