Grazing on the Run 题解
【题目大意】
大致题意就是,你的初始坐标为\(x\),你要去数轴上的\(n\)个点,问你到达所有点的时间总和最小是多少。
直接贪心肯定不行,所以考虑\(DP\)
先把坐标离散(也就是预处理两点距离\(dis[i][j]=abs(a[i]−a[j])\))
接下来考虑如何dp。
关注到一个性质,如果到目前为止,奶牛吃过最左的草堆编号为\(l\),吃过最右的草堆编号为\(r\),则如果奶牛不是傻它肯定把\([l,r]\)的草堆都吃过了,因为它吃草速度是瞬时的,都经过了肯定要嫖一口。
那很明显应该是个区间dp了。
不难定义出状态\(f[0/1][i][j]\)表示已经吃完\([i,j]\)的草了,且现在在左端\(i(0)\),在右端\(j(1)\),所需的最少时间和。
转移根据意义模拟一下就好了,假如我现在从区间的某端\(k\)转移到某点\(l\),则花去时间为\(dis[k][l]\),在这个时间内除了区间\([i,j]\),其他所有草堆的腐败值都增加了\(1\)。
具体转移顺序可以打个记搜。也可以直接循环转移——枚举区间长度,再枚举左端点。然后对于这道题内部再分类讨论一下处于左右端位置即可。时间复杂度为\(O(N^2)\)。
#include <bits/stdc++.h>
using namespace std ;
const int N = 1005 , INF = 0x3f3f3f3f ;
int n , s , st ;
int p[ N ] ;
int f[ N ][ N ][ 2 ] ;
int dis[ N ][ N ] ;
signed main () {
scanf ( "%d%d" , &n , &s ) ;
for ( int i = 1 ; i <= n ; i ++ ) scanf ( "%d" , &p[ i ] ) ;
p[ ++ n ] = s ;
sort ( p + 1 , p + 1 + n ) ;
for ( int i = 1 ; i <= n ; i ++ )
for ( int j = 1 ; j <= n ; j ++ )
dis[ i ][ j ] = dis[ j ][ i ] = abs ( p[ i ] - p[ j ] ) ;
st = lower_bound ( p + 1 , p + 1 + n , s ) - p ;
memset ( f , 0x3f , sizeof ( f ) ) ;
f[ st ][ st ][ 0 ] = f[ st ][ st ][ 1 ] = 0 ;
for ( int i = 1 ; i <= n ; i ++ ) {
for ( int l = 1 ; l + i - 1 <= n ; l ++ ) {
int r = i + l - 1 ;
if ( f[ l ][ r ][ 0 ] < INF ) {
if ( l > 1 ) f[ l - 1 ][ r ][ 0 ] = min ( f[ l - 1 ][ r ][ 0 ] , f[ l ][ r ][ 0 ] + dis[ l ][ l - 1 ] * ( n - i ) ) ;
if ( r < n ) f[ l ][ r + 1 ][ 1 ] = min ( f[ l ][ r + 1 ][ 1 ] , f[ l ][ r ][ 0 ] + dis[ l ][ r + 1 ] * ( n - i ) ) ;
}
if ( f[ l ][ r ][ 1 ] < INF ) {
if ( r < n ) f[ l ][ r + 1 ][ 1 ] = min ( f[ l ][ r + 1 ][ 1 ] , f[ l ][ r ][ 1 ] + dis[ r ][ r + 1 ] * ( n - i ) ) ;
if ( l > 1 ) f[ l - 1 ][ r ][ 0 ] = min ( f[ l - 1 ][ r ][ 0 ] , f[ l ][ r ][ 1 ] + dis[ r ][ l - 1 ] * ( n - i ) ) ;
}
}
}
printf ( "%d\n" , min ( f[ 1 ][ n ][ 0 ] , f[ 1 ][ n ][ 1 ] ) ) ;
return 0 ;
}
Grazing on the Run 题解的更多相关文章
- bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*
bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...
- BZOJ 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草( dp )
dp... dp( l , r , k ) , 表示 吃了[ l , r ] 的草 , k = 1 表示最后在 r 处 , k = 0 表示最后在 l 处 . ------------------- ...
- BZOJ1742[Usaco2005 nov]Grazing on the Run
Description John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可 以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋, ...
- 【bzoj1742】[Usaco2005 nov]Grazing on the Run 边跑边吃草 区间dp
题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋,它想把它们全部吃 ...
- [USACO2005 nov] Grazing on the Run【区间Dp】
Online Judge:bzoj1742,bzoj1694 Label:区间Dp 题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我 ...
- F. Mattress Run 题解
F. Mattress Run 挺好的一道题,对于DP的本质的理解有很大的帮助. 首先要想到的就是将这个拆成两个题,一个dp光求获得足够的夜晚的最小代价,一个dp光求获得足够的停留的最小代价. 显然由 ...
- [Usaco2005 nov]Grazing on the Run 边跑边吃草 BZOJ1742
分析: 首先,连续选择一段必定最优... 区间DP,f[i][j]表示从i开始,连续j个被吃掉了,并且,牛在i处,g[i][j]则表示在i+j-1处 f[i][j]可以从g[i+1][j]和f[i+1 ...
- poj 3042 Grazing on the Run
这个题目原型应该是吃完所有的草丛的最小时间,现在变成了每个草丛被吃的时间和,貌似如果还是按照原来的dp方法dp[i][j]表示吃完i到j的草丛的花掉的时间的话,有两个因素会影响后面的决策,一个是花掉的 ...
- 2018.10.22 bzoj1742: Grazing on the Run 边跑边吃草(区间dp)
传送门 区间dp入门题. 可以想到当前吃掉的草一定是一个区间(因为经过的草一定会吃掉). 然后最后一定会停在左端点或者右端点. f[i][j][0/1]f[i][j][0/1]f[i][j][0/1] ...
随机推荐
- python之将一个字符串str的内容倒叙过来,并输出。
inStr = input() flashback = inStr[::-1] print(flashback)
- Unity - NavMeshAgent-GetStart
Select scene geometry that should affect the navigation – walkable surfaces and obstacles. Check Nav ...
- bzoj2843极地旅行社
bzoj2843极地旅行社 题意: 一些点,每个点有一个权值.有三种操作:点与点连边,单点修改权值,求两点之间路径上点的权值和(需要判输入是否合法) 题解: 以前一直想不通为什么神犇们的模板中LCT在 ...
- 【一起学系列】之模板方法:写SSO我只要5分钟
意图 定义一个操作中的算法的骨架,将一些步骤延迟到子类中. Template Method使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤 模板方法模式的诞生 模板方法模式为我们提供了一 ...
- DEX文件解析--4、dex类的类型解析
一.前言 前几篇系列文章链接: DEX文件解析---1.dex文件头解析 DEX文件解析---2.Dex文件checksum(校验和)解析 DEX文件解析--3.dex文件 ...
- web测试中不容忽视的细节
最近在自动化测试的圈子里,我总是碰到很多人在群里和其他地方问为什么这个会出现错误? 为什么这个运行不了?为什么我百度了还是没用? 其实真正的原因可能是你忽略了下面这些需要注意的小地方: 1.页面分辨率 ...
- GPO - AppLocker
AppLocker can help you: Define rules based on file attributes that persist across app updates, such ...
- 集训作业 洛谷P1866 编号
这个题是个数学题啊. 总体思路不是很难,每个兔子有一个编号,只要不停的看下一个兔子有多少可选编号,再乘上之前的所有可能性就可以算出一共的编号方法. #include<iostream> # ...
- 【JVM之内存与垃圾回收篇】方法区
方法区 前言 这次所讲述的是运行时数据区的最后一个部分 从线程共享与否的角度来看 ThreadLocal:如何保证多个线程在并发环境下的安全性?典型应用就是数据库连接管理,以及会话管理 栈.堆.方法区 ...
- Saas Erp以及分销 助手
首先贴一下相关的截图 SaasErp 登陆页 Saas Erp主页 Saas Erp 其中的商品页 Saas Erp 打印模板设计页 分销助手登录页/手势密码页/主页 1.SaaS是Software ...