一、Best Time to Buy and Sell Stock I

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

Example 1:

Input: [7, 1, 5, 3, 6, 4]
Output: 5 max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)

Example 2:

Input: [7, 6, 4, 3, 1]
Output: 0 In this case, no transaction is done, i.e. max profit = 0.

 1 class Solution {
2 public:
3 //遍历一次,每次更新最小值,并且当前值与最小值相减,如果大于最大收入则更新最大收入
4 int maxProfit(vector<int>& prices) {
5 int len=prices.size();
6 if(len==0) return 0;
7 int Min=prices[0],res=0;
8 for(int i=0;i<len;i++)
9 {
10 if(prices[i]<Min) Min=prices[i];
11 res=res>(prices[i]-Min)?res:(prices[i]-Min);
12 }
13 return res;
14
15 }
16 };

二、Best Time to Buy and Sell Stock II

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

法一:所有的 低谷 与其 最近的 峰值的差  的和

 1 class Solution {
2 public:
3
4 int maxProfit(vector<int>& prices) {
5 int len=prices.size();
6 if(len==0||len==1) return 0;
7 int Max=0,i=1;
8 while(i<len)
9 {
10 while(i<len&&prices[i-1]>=prices[i])
11 i++;
12 int valley=prices[i-1];
13 while(i<len&&prices[i-1]<prices[i])
14 i++;
15 int peek=prices[i-1];
16 Max+=(peek-valley);
17 }
18 return Max;
19 }
20 };

法二:

 1 class Solution {
2 public:
3 int maxProfit(vector<int>& prices)
4 {
5 int len=prices.size();
6 if(len==0||len==1) return 0;
7 int Max=0;
8 for(int i=1;i<len;i++){
9 if(prices[i-1]<prices[i])
10 Max+=(prices[i]-prices[i-1]);
11 }
12 return Max;
13 }
14 };

三、Best Time to Buy and Sell Stock III

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

 1 class Solution {
2 public:
3 //利用四个状态来解答这个题目,假设才开始手里有 0 块钱
4 /*
5 1、sell2[i]:前i天进行第二笔交易中的卖股票状态后剩余最多的钱
6 2、buy2[i]:前i天进行第二笔交易中的买股票状态后剩余最多的钱
7 3、sell1[i]:前i天进行第一笔交易中的卖股票状态后剩余最多的钱
8 4、buy1[i]:
9 sell2[i]=max(sell2[i-1],buy2[i-1]+prices[i]);
10 buy2[i]=max(buy2[i-1],sell1[i-1]-prices[i]);
11 sell1[i]=max(sell1[i-1],buy1[i-1]+prices[i]);
12 buy1[i]=max(buy1[i],-prices[i]);
13 */
14 int maxProfit(vector<int>& prices) {
15 int len=prices.size();
16 if(len==0||len==1) return 0;
17 int sell2=0;
18 int sell1=0;
19 int buy2=INT_MIN;
20 int buy1=INT_MIN;
21 for(int i=0;i<len;i++){
22 sell2=max(sell2,buy2+prices[i]);
23 buy2=max(buy2,sell1-prices[i]);
24 sell1=max(sell1,buy1+prices[i]);
25 buy1=max(buy1,-prices[i]);
26 }
27 return max(sell1,sell2);
28 }
29 };

四:Best Time to Buy and Sell Stock IV

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

 1 class Solution {
2 public:
3 //一次交易代表(买一次并且卖一次)当交易次数k大于数组长度的一半的时候,交易次数就会溢出,就相当于 随便交易求最大利润,就是用贪心解决(II)。
4 /*如果交易次数不到一半
5 采用动态规划来解决问题。
6 我们需要维护如下两个量:
7 global[i][j]:当前到达第i天最多可以进行j次交易,所得到的最大利润。
8 local[i][j]:当前到达第i天最多可以进行j次交易,而且最后一次交易在当天卖出,所得到的最大利润。
9 状态转移方程:
10 global[i][j] = max(local[i][j], global[i-1][j])
11 上述方程比较两个量的大小:①当前局部最大值;第i天交易了②过往全局最大值。到第i-1天进行j次交易的最大值,第i天没有交易
12 local[i][j] = max(global[i-1][j-1] + max(diff, 0), local[i-1][j] + diff)
13 上述方程比较两个量的大小:
14 ①全局到i-1天进行j-1次交易,然后加上今天的交易(如果今天的交易赚钱的话)。
15 ②取局部第i-1天进行j次交易,然后加上今天的差值(local[i-1][j]是第i-1天卖出的交易,它加上diff后变成第i天卖出,并不会增加交易次数。无论diff是正还是负都 要加上,否则就不满足local[i][j]必须在最后一天卖出的条件了)
16 */
17 int maxProfit(int k, vector<int>& prices) {
18 int len=prices.size();
19 if(len==0||len==1) return 0;
20 if(k>=len/2) return quickSolve(prices);
21 int global[k+1]={0};
22 int local[k+1]={0};
23 int diff=0;
24 for(int i=1;i<len;i++)
25 {
26 diff=prices[i]-prices[i-1];
27 for(int j=k;j>=1;j--)
28 {
29 local[j]=max(global[j-1]+max(diff,0),local[j]+diff);
30 global[j]=max(global[j],local[j]);
31 }
32 }
33 return global[k];
34 }
35 private:
36 int quickSolve(vector<int>& prices)
37 {
38 int res=0;
39 for(int i=1;i<prices.size();i++)
40 {
41 if(prices[i]>prices[i-1]) res+=(prices[i]-prices[i-1]);
42 }
43 return res;
44 }
45 };
 

Best Time to Buy and Sell Stock I II III IV的更多相关文章

  1. LeetCode之“动态规划”:Best Time to Buy and Sell Stock I && II && III && IV

    Best Time to Buy and Sell Stock I 题目链接 题目要求: Say you have an array for which the ith element is the ...

  2. [Leetcode][JAVA] Best Time to Buy and Sell Stock I, II, III

    Best Time to Buy and Sell Stock Say you have an array for which the ith element is the price of a gi ...

  3. LeetCode:Best Time to Buy and Sell Stock I II III

    LeetCode:Best Time to Buy and Sell Stock Say you have an array for which the ith element is the pric ...

  4. Best Time to Buy and Sell Stock I II III

    Best Time to Buy and Sell Stock Say you have an array for which the ith element is the price of a gi ...

  5. leetcode day6 -- String to Integer (atoi) &amp;&amp; Best Time to Buy and Sell Stock I II III

    1.  String to Integer (atoi) Implement atoi to convert a string to an integer. Hint: Carefully con ...

  6. Best Time to Buy and Sell Stock I,II,III [leetcode]

    Best Time to Buy and Sell Stock I 你只能一个操作:维修preMin拍摄前最少发生值 代码例如以下: int maxProfit(vector<int> & ...

  7. 解题思路:best time to buy and sell stock i && ii && iii

    这三道题都是同一个背景下的变形:给定一个数组,数组里的值表示当日的股票价格,问你如何通过爱情买卖来发家致富? best time to buy and sell stock i: 最多允许买卖一次 b ...

  8. [LeetCode] 递推思想的美妙 Best Time to Buy and Sell Stock I, II, III O(n) 解法

    题记:在求最大最小值的类似题目中,递推思想的奇妙之处,在于递推过程也就是比较求值的过程,从而做到一次遍历得到结果. LeetCode 上面的这三道题最能展现递推思想的美丽之处了. 题1 Best Ti ...

  9. [leetcode]_Best Time to Buy and Sell Stock I && II

    一个系列三道题,我都不会做,google之答案.过了两道,第三道看不懂,放置,稍后继续. 一.Best Time to Buy and Sell Stock I 题目:一个数组表示一支股票的价格变换. ...

随机推荐

  1. 无法访问GitHub

    我们开发者经常用的最大的同性交流平台--GitHub忽然访问不了了,很尴尬 可以打开控制台 ping一下 github.com 果不其然 不通 不过幸运的是里面有github的ip地址,好像是美国某个 ...

  2. 会用Docker的人都别装了,这多简单呐

    学术又官方的说法 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器或Windows 机器上,也可以实现虚拟化,容器是 ...

  3. git-submodule子模块的添加、使用和删除

    目录 添加 使用 更新 删除 hugo添加主题的时候 命令如下: git submodule add https://github.com/samrobbins85/hugo-developer-po ...

  4. openresty上安装waf

    一,查看openresty的当前版本 [root@localhost luacache]# /usr/local/openresty/bin/openresty -V nginx version: o ...

  5. linux wget指定下载目录和重命名

    当我们在使用wget命令下载文件时,通常会需要将文件下载到指定的目录,这时就可以使用 -P 参数来指定目录,如果指定的目录不存在,则会自动创建. 示例: p.p1 { margin: 0; font: ...

  6. centos8平台使用rz/sz上传下载文件

    一,rz/sz的用途 1,rz,sz是Linux/Unix服务器同客户端通过ZModem进行文件传输的命令行工具 说明:客户端需要使用支持ZModem的telnet/ssh客户端(比如windows平 ...

  7. <audio> 标签

    <audio> 标签定义声音,比如音乐或其他音频流. 实例 一段简单的 HTML 5 音频:

  8. PyTorch常用参数初始化方法详解

    1. 均匀分布 torch.nn.init.uniform_(tensor, a=0, b=1) 从均匀分布U(a, b)中采样,初始化张量. 参数: tensor - 需要填充的张量 a - 均匀分 ...

  9. Helium文档13-WebUI自动化-helium快速切换到selenium状态并调用其方法

    前言 前面说过helium是对Selenium 进行了封装,那么我们如何使用selenium的方法呢,通过下面的介绍,我们能够清楚在helium中能够使用selenium的任何方法 入参介绍 def ...

  10. Linux命令获得帮助

    在Linux中获得帮助 查帮助的思路 whatis CMD mandb type CMD 如果内部:help CMD ; man bash 如果外部:CMD --help | -h 概述 获取帮助的能 ...