【UOJ#236】[IOI2016]railroad(欧拉回路,最小生成树)
【UOJ#236】[IOI2016]railroad(欧拉回路,最小生成树)
题面
题解
把速度看成点,给定的路段看成边,那么现在就有了若干边,然后现在要补上若干边,以及一条\([inf,\)使得原图存在欧拉回路,那么就变成了求从大往小连边的边长的最小值。
而欧拉回路每个点被来回覆盖的次数左右一定是一样的,假设向右-向左覆盖的次数为\(g_i\),那么如果\(g_i>0\),花费\(1\)的代价向\(i-1\)连边,如果\(g_i>0\),那么则可以不花费代价连边\(i\rightarrow i+1\)。
看起来这样子得到了一个解,实际上欧拉回路还需要满足连通性,再求一遍\(MST\)把图连通就行了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include"railroad.h"
using namespace std;
#define MAX 400200
#define ll long long
int S[MAX<<2],top,cnt,c[MAX];
int f[MAX];int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
struct Line{int u,v,w;}e[MAX];
bool operator<(Line a,Line b){return a.w<b.w;}
long long plan_roller_coaster(vector<int> s,vector<int> t)
{
int n=s.size();ll ans=0;
for(int i=0;i<n;++i)S[++top]=s[i],S[++top]=t[i];
S[++top]=-1e9-100;S[++top]=1e9+100;
sort(&S[1],&S[top+1]);top=unique(&S[1],&S[top+1])-S-1;
for(int &i:s)i=lower_bound(&S[1],&S[top+1],i)-S;
for(int &i:t)i=lower_bound(&S[1],&S[top+1],i)-S;
c[2]=-1;c[top]=1;for(int i=1;i<=top;++i)f[i]=i;
for(int i=0;i<n;++i)c[s[i]+1]++,c[t[i]+1]--;
for(int i=0;i<n;++i)f[getf(s[i])]=getf(t[i]);
for(int i=1;i<=top;++i)c[i]+=c[i-1];
for(int i=2;i<=top;++i)
{
if(c[i]==0)continue;
if(c[i]>0)ans+=1ll*c[i]*(S[i]-S[i-1]);
f[getf(i)]=getf(i-1);
}
for(int i=2;i<top-1;++i)if(getf(i)!=getf(i+1))e[++cnt]=(Line){i,i+1,S[i+1]-S[i]};
sort(&e[1],&e[cnt+1]);
for(int i=1;i<=cnt;++i)
if(getf(e[i].u)!=getf(e[i].v))
f[getf(e[i].u)]=getf(e[i].v),ans+=e[i].w;
return ans;
}
【UOJ#236】[IOI2016]railroad(欧拉回路,最小生成树)的更多相关文章
- 【欧拉回路+最小生成树】SD开车@山东2018省队一轮集训day1
目录 [欧拉回路+最小生成树]SD开车@山东2018省队一轮集训day1 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 SOLUTION CODE [欧拉回路+最小生成树]SD开车@ ...
- UOJ #236. 【IOI2016】railroad
Description Anna 在一个游乐园工作.她负责建造一个新的过山车铁路.她已经设计了影响过山车速度的 nn 个特殊的路段(方便起见标记为 00 到 n−1n−1).现在 Anna 必须要把这 ...
- UOJ236 IOI2016 Railroad 差分、欧拉回路、最小生成树
传送门 将"进入路段时速度\(\leq s_i\)"转换为:"进入路段时速度恰好等于\(s_i\),并且铺设铁轨有加速和减速两种,加速无需代价,减速每\(1 km/h\) ...
- [JZOJ 5895] [NOIP2018模拟10.5] 旅游 解题报告 (欧拉回路+最小生成树)
题目链接: https://jzoj.net/senior/#main/show/5895 题目: 题解: 有一个好像比较显然的性质,就是每条边最多经过两次 那么我们考虑哪些边需要经过两次.我们把需要 ...
- P6628-[省选联考 2020 B 卷] 丁香之路【欧拉回路,最小生成树】
正题 题目链接:https://www.luogu.com.cn/problem/P6628 题目大意 给出\(n\)个点的一张完全无向图,\(i\sim j\)的边权是\(|i-j|\). 然后给出 ...
- wawawa8的模板复习计划
wawawa8的模板复习计划 数据结构 //手写堆 [link][https://www.luogu.org/problemnew/show/P3378] //并查集 [link][https://w ...
- 全国青少年信息学奥林匹克分区联赛(N)竞赛大纲
全国青少年信息学(计算机)奥林匹克分区联赛竞赛大纲 一.初赛内容与要求:(#表示普及组不涉及,以下同) 计算机的基本发展 诞生与发展 特点 在现代社会中的应用 计算机系统的基本组成 计算机的工作原理# ...
- UOJ#117. 欧拉回路
#117. 欧拉回路 题目描述 有一天一位灵魂画师画了一张图,现在要你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好一次. 一共两个子任务: 这张图是无向图.(50分) 这张图是有向图.(5 ...
- 暑假集训2016day3T1 欧拉回路(UOJ #117欧拉回路)(史上最全的欧拉回路纯无向图/有向图解析)
原题……可惜不会……真是一只大蒟蒻…… ———————————————————————————————— 有一天一位灵魂画师画了一张图,现在要你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好 ...
随机推荐
- 蒲公英App开发之检测新版本
https://www.jianshu.com/p/2d3f048511d7 2017.04.17 16:22* 字数 62 阅读 422评论 0喜欢 1 可以在App内部实现检测版本更新并实现安装. ...
- Redis客户端断开重连功能要点
Redis客户端: Java基于Jedis开发 C#基于StackExchange开发 C++基于acl开发 首先确保在主从模式下,客户端能分辨主从节点,自动连接正确的客户端,这样只要有一个节点可用, ...
- python3 selenium webdriver 元素定位xpath定位骚操作
源文http://www.cnblogs.com/qingchunjun/p/4208159.html By.xpath() 这个方法是非常强大的元素查找方式,使用这种方法几乎可以定位到页面上的任意元 ...
- Failed to execute goal org.apache.maven.plugins:maven-clean-plugin:2.5:clean (default-
Maven项目报错:Failed to execute goal org.apache.maven.plugins:maven-clean-plugin:2.5:clean (default-clea ...
- mysql修改默认端口号后从windows命令行登录
mysql -u root -p -P 大写的P代表端口号,小写的p代表密码
- 【git】如何去解决fatal: refusing to merge unrelated histories
我在Github新建一个仓库,写了License,然后把本地一个写了很久仓库上传. 先pull,因为两个仓库不同,发现refusing to merge unrelated histories,无法p ...
- hive字符函数
- Quartz 定时任务时间设置
转自https://blog.csdn.net/zdx1515888659/article/details/79158169 quartz定时任务时间设置: 这些星号由左到右按顺序代表 : * * * ...
- linux 依赖解决办法
在安装软件过程中如果出现依赖不满足,有两种情况: 1:你系统里面没有安装依赖软件,[但是你的软件源里面有这个软件,你只是没有安装], 这种情况很简单,通过 sudo apt-get install - ...
- Java 下载 HLS (m3u8) 视频
下载索引文件 public String getIndexFile() throws Exception{ URL url = new URL(originUrlpath); //下载资源 Buffe ...