逆元(inv)
当求解公式:(a/b)%m 时,因b可能会过大,会出现爆精度的情况,所以需变除法为乘法:
设c是b的逆元,则有b*c≡1(mod m);
则(a/b)%m = (a/b)*1%m = (a/b)*b*c%m = a*c(mod m);
即a/b的模等于a*b的逆元的模;
逆元就是这样应用的;
所以逆元的用处可以说是很广的,很有必要掌握
1.费马小定理求逆元
适用范围:一般在mod是个素数的时候用,比扩欧快一点而且好写。
ll q_pow(ll a,ll n){
ll ans=; ll base=a;
while(n){
if(n&) ans=(ans*base)%mod;
base=base*base%mod;
n>>=;
}
return ans;
}
ll inv(ll a,ll b){
return q_pow(a,b-);
}
2.扩展欧几里得求逆元
适用范围:只要存在逆元即可求,适用于个数不多但是mod很大的时候,也是最常见的一种求逆元的方法。
void exgcd(ll a,ll b,ll& d,ll& x,ll& y)
{
if(!b) { d = a; x = ; y = ; }
else{ exgcd(b, a%b, d, y, x); y -= x*(a/b); }
}
ll inv(ll a, ll p)
{
ll d, x, y;
exgcd(a, p, d, x, y);
return d == ? (x+p)%p : -;
}
逆元(inv)的更多相关文章
- 逆元Inv(模板+应用)
逆元: 如果满足公式,则有a 是 b的逆元同时b也是a的逆元. 逆元的应用: 设c为b在对m取余的意义下的逆元: 在求解公式 (a / b) % m的时候,如果b可能会非常的大,所以会出现爆精度的问题 ...
- gcd,lcm,ext_gcd,inv
Least Common Multiple http://acm.hdu.edu.cn/showproblem.php?pid=1019 #include<cstdio> int gcd( ...
- hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10
题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...
- A. On The Way to Lucky Plaza 概率 乘法逆元
A. On The Way to Lucky Plaza time limit per test 1.0 s memory limit per test 256 MB input standard i ...
- Codeforces gym 101343 A. On The Way to Lucky Plaza【概率+逆元+精度问题】
2017 JUST Programming Contest 2.0 题目链接:http://codeforces.com/gym/101343/problem/A A. On The Way to ...
- HDU 5698——瞬间移动——————【逆元求组合数】
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- 【题解】POJ1845 Sumdiv(乘法逆元+约数和)
POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...
- O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求
筛素数 void shai() { no[1]=true;no[0]=true; for(int i=2;i<=r;i++) { if(!no[i]) p[++p[0]]=i; int j=1, ...
- hdu 5698(杨辉三角的性质+逆元)
---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...
随机推荐
- Redis教程(Linux)
这里汇总了从简单的安装到较为复杂的配置,由浅入深的学习redis... 一 , 安装 1) redis扩展安装 从官网上下载扩展压缩包 wget http://pecl.php.net/get/red ...
- Composer安装与使用
Composer是PHP中用来管理依赖(dependency)关系的工具.你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer会帮你安装这些依赖的库文件. Windows ...
- 6-2 Verbs and Adjectives with that clauses
1 Many sentences in English contain two clauses: a main clause and a "that" clause. The &q ...
- 项目中常用的MySQL 优化
本文我们来谈谈项目中常用的MySQL优化方法,共19条,具体如下: 一.EXPLAIN 做MySQL优化,我们要善用EXPLAIN查看SQL执行计划. 下面来个简单的示例,标注(1.2.3.4.5)我 ...
- [转帖]浏览器的F5和Ctrl+F5
浏览器的F5和Ctrl+F5 https://www.cnblogs.com/xiangcode/p/5369084.html 在浏览器里中,按F5键和按F5同时按住Ctrl键(简称Ctrl+F5), ...
- Redis 安装学习
Linux下下载安装redis https://redis.io/download tar -zvxf redisxxx cd redisxxxx make ---进行安装 vim ~.bash_p ...
- linux安装ssh服务
1.安装openssh-server sudo apt-get install openssh-server 2.检查openssh-server是否安装成功 sudo ps -e | grep ss ...
- K8S入门学习
一.k8s是个什么鬼? k8s全名:kubernetes 它是一个工具,在linux上管理应用生命周期的一个工具. 二.k8s有什么卵用? 1.当你把项目部署到服务器集群上,一台服务器挂了,k8s它可 ...
- Django的分页和中间件
一.分页 Django的分页器(paginator) view.py from django.shortcuts import render,HttpResponse # Create your vi ...
- Dom4j解析
dom4j-1.6.1.jar, 这个包提供了xml解析相关的方法. 这里做一个记录,微信公众号里需要对HttpServletRequest做解析,实际上也可以用dom4j提供的方法进行解析转换. 这 ...