codechef EBAIT Election Bait【欧几里得算法】
题目分析:
欧几里得算法来处理一类分数问题,分数问题的形式如下
$\frac{a}{b} < \frac{p}{q} < \frac{c}{d}$
当a=0时,答案等于$\frac{1}{\lfloor \frac{d}{c} \rfloor + 1}$
当a>=b时,可以考虑前后同减去一个数化为真分数,再加上
当c>d时,因为不满足一二,所以可以直接令答案等于$\frac{1}{1}$
否则分子分母取倒,再倒回来
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = ; int n,C1,C2;
int a[maxn]; pair<int,int> p1,p2; void comp(pair<int,int> alpha,pair<int,int> beta){
if(1ll*alpha.first*beta.second >= 1ll*alpha.second*beta.first)
p1 = beta;
} pair<int,int> euchild(pair<int,int> alpha,pair<int,int> beta){
if(alpha.first == ) return make_pair(,beta.second/beta.first+);
if(alpha.first >= alpha.second){
int lw = alpha.first/alpha.second,hh = beta.second;
pair<int,int> jh = euchild(make_pair(alpha.first%alpha.second,alpha.second),make_pair(beta.first-lw*hh,hh));
jh.first += jh.second*lw;
return jh;
}
if(beta.first > beta.second) return make_pair(,);
swap(beta.first,beta.second);swap(alpha.first,alpha.second);
pair<int,int> jh = euchild(beta,alpha);
swap(jh.first,jh.second);
return jh;
} void work(){
if(n&){puts("-1");return;}
p1 = make_pair(,);
int a1 = ,a2 = ;
for(int i=;i<n;i++){
if(i&) a1 += a[i];
else a2 += a[i];
comp(p1,make_pair(a1,a2));
}
a2 += a[n]; p2 = make_pair(a2,a1); swap(p1.first,p1.second);
if(1ll*p1.first*p2.second > 1ll*p2.first*p1.second){puts("-1");return;}
pair<int,int> ans = euchild(p1,p2);
if(ans.first <= C1 && ans.second <= C2){
printf("%d %d\n",ans.first,ans.second);
}else puts("-1");
} int main(){
int Tmp; scanf("%d",&Tmp);
while(Tmp--){
scanf("%d%d%d",&n,&C1,&C2);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
work();
}
return ;
}
codechef EBAIT Election Bait【欧几里得算法】的更多相关文章
- 扩展欧几里得算法(extgcd)
相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...
- 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去
写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...
- noip知识点总结之--欧几里得算法和扩展欧几里得算法
一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a ...
- 欧几里得算法与扩展欧几里得算法_C++
先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...
- 最小公约数(欧几里得算法&&stein算法)
求最小公约数,最easy想到的是欧几里得算法,这个算法也是比較easy理解的,效率也是非常不错的. 也叫做辗转相除法. 对随意两个数a.b(a>b).d=gcd(a.b),假设b不为零.那么gc ...
- vijos1009:扩展欧几里得算法
1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...
- ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)
1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...
- 欧几里得算法求最大公约数(gcd)
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } ...
- Python 最大公约数的欧几里得算法及Stein算法
greatest common divisor(最大公约数) 1.欧几里得算法 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数. 其计算原理依赖于下面的定理: 两个整数的最大公约数等 ...
随机推荐
- Arduino Core For ESP8266
如果选择纯C作为ESP8266的开发,有两个途径: 使用乐鑫官方原生的 RTOS-SDK或者NONOS-SDK 使用Arduino IDE 使用PlatformIO 作为一个"Arduino ...
- ASP.Net Core 中使用Zookeeper搭建分布式环境中的配置中心系列一:使用Zookeeper.Net组件演示基本的操作
前言:马上要过年了,祝大家新年快乐!在过年回家前分享一篇关于Zookeeper的文章,我们都知道现在微服务盛行,大数据.分布式系统中经常会使用到Zookeeper,它是微服务.分布式系统中必不可少的分 ...
- 未安装Oracle客户端的服务器上,使用ASP.NET远程连接Oracle
公司服务器一直都是使用 .NET+SQLSERVER的开发方式,有个项目需要进行读取远程Oracle的需求.由于oracle 基本不会,也是一边做一遍摸索. 首先是使用工具测试是否已经联通,因为之前用 ...
- Python-random模块-59
random模块: 随机数模块 >>> import random #随机小数 >>> random.random() # 大于0且小于1之间的小数 0.76643 ...
- AtCoder Beginner Contest 122 D - We Like AGC (DP)
D - We Like AGC Time Limit: 2 sec / Memory Limit: 1024 MB Score : 400400 points Problem Statement Yo ...
- python的循环和选择
一.python的选择结构: python的选择结构有两种选择结构一种是单选择(if...else)另一种则是多选择结构(if ...elif...elif) 下面用代码来实现: 1.if....el ...
- Spring中RedirectAttributes的用法
RedirectAttributes 是Spring mvc 3.1版本之后出来的一个功能,专门用于重定向之后还能带参数跳转的的工具类.他有两种带参的方式: 第一种: redirectAttribut ...
- [转帖]Docker四种网络模式
Docker(十四)-Docker四种网络模式 https://www.cnblogs.com/zhuochong/p/10069293.html 计算机网络相关的知识 非常有用.. Docker 安 ...
- Oracle条件判断if...elsif
- easyUI 数据表格datagrid的使用
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...