caffe调loss方法
正文
what should I do if...
...my loss diverges? (increases by order of magnitude, goes to inf. or NaN)
lower the learning rate
raise momentum (with corresponding learning rate drop)
raise weight decay
raise batch size
use gradient clipping (limit the L2 norm of the gradient to a particular value at each iteration; shrink it to that norm if greater)
try another solver: momentum SGD, ADAM, RMSProp, ...
try a smaller initialization (e.g., for a Gaussian init., lower the stdev.)
what should I do if...
...my loss doesn’t improve / gets stuck / drops slowly?
- raise the learning rate
- (maybe) lower momentum, weight decay, and/or batch size
- try another solver: momentum SGD, ADAM, RMSProp, ...
- transfer a pre-trained (e.g. on ImageNet) initialization, if possible
- use a larger initialization (in particular, make sure you didn’t zero-initialize any multiplicative weights in intermediate layers)
use a “smarter” initialization (e.g., for linear layers followed by ReLUs, try the msra initialization in Caffe)
remove some layers to make the network shallower
at least to start!
a strategy for model design: begin with a simple, trainable network; “deepen” it by adding new layers one-by-one
-modify the architecture to improve gradient flow:
batch normalization
residual learning [ResNet]
intermediate losses [GoogLeNet]
other tricks
be patient! (go outside?)
deep learning can take a long time
training AlexNet in 2012: 12 days
although this is down to 1 day in 2015!
loss hovers around the chance value of ln(1000) ≅ 6.908 for the first 1000+ iterations (~1 hour on 2012 GPU)
training ResNet-152 in 2015: 1-2 months (on 8 GPUs!)
the best configurations (net architectures, solvers) at convergence are often not the ones that train fastest early on
some tricks to speed up learning can be “greedy” rather than ultimately beneficial
补充一个:如果显存不够,考虑设定iter_size来增大batch_size
reference
caffe调loss方法的更多相关文章
- JVM垃圾回收机制总结:调优方法
转载: JVM垃圾回收机制总结:调优方法 JVM 优化经验总结 JVM 垃圾回收器工作原理及使用实例介绍
- JVM调优总结:调优方法
JVM调优总结:调优方法 2012-01-10 14:35 和你在一起 和你在一起的博客 字号:T | T 下面文章将讲解JVM的调优工具以及如何去调优等等问题,还有一些异常问题的处理.详细请看下文. ...
- Web app 的性能瓶颈与性能调优方法
1. web app 性能测试工具使用 2. mysql 性能分析与调优方法
- 性能测试培训:tomcat性能调优方法
性能测试培训:tomcat性能调优方法 poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.在poptest的loadrunner ...
- LightGBM 调参方法(具体操作)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- disruptor调优方法
翻译自disruptor在github上的文档,https://github.com/LMAX-Exchange/disruptor/wiki/Getting-Started Basic Tuning ...
- JVM调优方法
目 录 目 录 I 诠释JVM调优 1 第1章 JVM内存模型及垃圾收集算法 1 1.1 根据Java虚拟机规范,JVM将内存划分为 1 1.2 垃圾回收算法 1 第2章 内存泄漏及解决方法 2 2. ...
- 无刷电调修理方法 | 银燕(EMAX)12A无刷电调维修
一. 银燕(XP-12A)电调修理 笔者的电调在使用4S电池时烧毁,其中一个PMOS管明显烧焦. 将其拆除,买来新元件重新焊接,通电依然冒烟了. 引脚定义 丝印662F: XC6206P332MR 低 ...
- Python中Gradient Boosting Machine(GBM)调参方法详解
原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对 ...
随机推荐
- 高并发的socket的高性能设计【转】
转自:https://blog.csdn.net/quincyfang/article/details/44654351 高性能数据传输系统的框架设计 1 引言 随着互联网和物联网的高速发展,使用网络 ...
- python3+selenium入门12-警告框处理
在WebDriver中要处理JS生成的alert.confirm以及prompt,需要使用到switch_to_alert()定位到alert/confirm/prompt,然后再使用text.acc ...
- 谈谈asp,php,jsp的优缺点
谈谈asp,php,jsp的优缺点 http://hi.baidu.com/lhyboy/item/f95bac264c38830d72863e41 asp.php.asp.net.jsp等主流网 ...
- LSH(Locality Sensitive Hashing)原理与实现
原文地址:https://blog.csdn.net/guoziqing506/article/details/53019049 LSH(Locality Sensitive Hashing)翻译成中 ...
- 解决“错误 D8016 “/ZI”和“/Gy-”命令行选项不兼容 ”问题
在Visual Studio 2017中调试VC++6.0代码,出现该问题,解决方案如下:(1)[项目]—>[属性]—>[C/C++]—> [常规]—>[调试信息格式]—> ...
- MYSQL 获取当前星期方法
当前星期一: select subdate(curdate(),date_format(curdate(),'%w')-1) 当前星期日: select subdate(curdate(),date_ ...
- 36)django-jsonp跨域
一:什么是JSONP JSONP(JSON with Padding)是JSON的一种"使用模式",可用于解决主流浏览器的跨域数据访问的问题.由于同源策略,一般来说位于 serve ...
- vue 之 引入elementUI(两步走)
1.npm 引入elementUI npm i element-ui -S 2.在main.js文件中全局引入 import ElementUI from 'element-ui' import 'e ...
- redhat7.3安装yum源
#检查rehat自带的yum源[root@localhost ~]# rpm -qa | grep yum -.el7.noarch -.el7.noarch -.el7.noarch -.el7.n ...
- Git 在webstrom上安装git
Git下载地址:https://git-scm.com/download/win 用webstorm迁入迁出代码时,首先要先下载git,网址一搜就可以搜到,然后开始配置webstorm,打开webst ...