最长不下降子序列nlogn
b[i]表示长度为i的最长不下降子序列的最小末尾元素的值
显然它是单调递增的,满足二分性质,然后就可以愉快地二分啦.
这个做法是错误的!!!!!!!(划掉
这个方法是正确的,替换的时候虽然位置顺序换了,最终输出来的答案不对,但是是存在正确答案替换回去的,想出这个方法的人也是真的nb!
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<set>
#include<map>
#include<stack>
#include<cstring>
#define inf 2147483647
#define ls rt<<1
#define rs rt<<1|1
#define lson ls,nl,mid,l,r
#define rson rs,mid+1,nr,l,r
#define N 100010
#define For(i,a,b) for(int i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar() using namespace std;
int a[N],b[N],n,len;
void in(int &x){
int y=;
char c=g();x=;
while(c<''||c>''){
if(c=='-')y=-;
c=g();
}
while(c<=''&&c>=''){
x=(x<<)+(x<<)+c-'';c=g();
}
x*=y;
}
void o(int x){
if(x<){
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
}
int main(){
in(n);
For(i,,n)in(a[i]);
len=;
b[]=a[];
For(i,,n){
if(a[i]>=b[len])b[++len]=a[i];
else{
int x=upper_bound(b+, b+len+, a[i])-b;
b[x]=a[i];
}
// b[upper_bound(b+1, b+len+1, a[i])-b-1]=a[i];
}
o(len);
return ;
}

最长不下降子序列nlogn的更多相关文章
- 最长不下降子序列nlogn算法详解
今天花了很长时间终于弄懂了这个算法……毕竟找一个好的讲解真的太难了,所以励志我要自己写一个好的讲解QAQ 这篇文章是在懂了这个问题n^2解决方案的基础上学习. 解决的问题:给定一个序列,求最长不下降子 ...
- hdu1025 最长不下降子序列nlogn算法
C - DP Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:32768KB 64bit I ...
- 最长不下降子序列 nlogn && 输出序列
最长不下降子序列实现: 利用序列的单调性. 对于任意一个单调序列,如 1 2 3 4 5(是单增的),若这时向序列尾部增添一个数 x,我们只会在意 x 和 5 的大小,若 x>5,增添成功,反之 ...
- tyvj 1049 最长不下降子序列 n^2/nlogn
P1049 最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 ...
- 最长不下降子序列的O(n^2)算法和O(nlogn)算法
一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...
- 最长不下降子序列 O(nlogn) || 记忆化搜索
#include<stdio.h> ] , temp[] ; int n , top ; int binary_search (int x) { ; int last = top ; in ...
- 最长不下降子序列 (O(nlogn)算法)
分析: 定义状态dp[i]表示长度为i的最长不下降子序列最大的那个数. 每次进来一个数直接找到dp数组第一个大于于它的数dp[x],并把dp[x - 1]修改成 那个数.就可以了 AC代码: # in ...
- P1020 导弹拦截(nlogn求最长不下降子序列)
题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...
- 最长不下降子序列(LIS)
最长上升子序列.最长不下降子序列,解法差不多,就一点等于不等于的差别,我这里说最长不下降子序列的. 有两种解法. 一种是DP,很容易想到,就这样: REP(i,n) { f[i]=; FOR(j,,i ...
随机推荐
- Mac配置Jdk 安装及系统环境配置
注:本文来于< Mac配置Java开发环境 > 1. 下载JDK 从下面链接选择合适版本的安装包进行下载...笔者下载的是jdk-9.0.1 链接:http://www.oracl ...
- Confluence 6 管理协同编辑 - 修改编辑模式
编辑模式确定了你站点所有用户使用协同编辑的体验,这个是你对协同编辑进行启用和关闭的地方. 希望修改编辑模式: 进入 > 基本配置(General Configuration) > 协同编 ...
- 【docker】私有仓库搭建
主要参考:http://blog.csdn.net/gqtcgq/article/details/51163558 假设我们在1.1.1.1:5000上搭建私人仓库,并在2.2.2.2上访问这个私人仓 ...
- BrupSuite渗透测试笔记(十一)
一.数据查找和拓展功能的使用 1.BrupSuite高级功能在界面布局上主要分成两个部分,一是菜单栏,另一个是Engagement tools,Brup菜单下包含的数据查找Search 组件状态存储. ...
- Nginx配置笔记
配置资源的缓存周期 location ~ .*\.(gif|jpg|jpeg|png|bmp|swf)$ { root www; expires 3560d; } loca ...
- 任务超时退出的方法 C#
超出时间方法退出.防止卡住. 方法: private static bool ImportTaskTimeout(Action method, int hours) { try { var task ...
- 设置IDEA中的web
- 计蒜客31452 Supreme Number(找规律)
A prime number (or a prime) is a natural number greater than 11 that cannot be formed by multiplying ...
- 回到未来123Back To The Future
或许,决定着现在的过去已经无法改变,但决定着未来的现在,却在我们每个人的手里. 路?我们要去的地方不需要路.(Roads? Where we're going we don't need roads) ...
- https://www.cnblogs.com/zoro-robin/p/6110188.html
https://www.cnblogs.com/zoro-robin/p/6110188.html https://blog.csdn.net/kongxx/article/details/65435 ...