【深度学习】吴恩达网易公开课练习(class1 week2)
知识点汇总
作业内容:用logistic回归对猫进行分类
numpy知识点:
- 查看矩阵维度: x.shape
- 初始化0矩阵: np.zeros((dim1, dim2))
- 去掉矩阵中大小是1的维度: x = np.squeeze(x)
- 将(a, b, c, d)矩阵转换为(b\(*\)c\(*\)d, a): X_flatten = X.reshape(X.shape[0], -1).T
算法逻辑梳理:
- 导入包
- 输入数据处理: 载入图片,格式转换,归一化
- 初始化参数
- 前向传播
- 反向更新
- 预测结果
- 收敛曲线图
logistic回归代码:
# 整体代码
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
%matplotlib inline
# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
# Reshape the training and test examples
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.
def sigmoid(z):
s = 1 / (1 + np.exp(-z))
return s
def initialize_with_zeros(dim):
w = np.zeros((dim, 1))
b = 0
assert(w.shape == (dim, 1))
assert(isinstance(b, float) or isinstance(b, int))
return w, b
def propagate(w, b, X, Y):
m = X.shape[1]
# FORWARD PROPAGATION (FROM X TO COST)
A = sigmoid(np.dot(w.T, X) + b) # compute activation
cost = - 1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A)) # compute cost
# BACKWARD PROPAGATION (TO FIND GRAD)
dw = 1 / m * np.dot(X, (A - Y).T)
db = 1 / m * np.sum(A - Y)
assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
costs = []
for i in range(num_iterations):
# Cost and gradient calculation
grads, cost = propagate(w, b, X, Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule
w = w - learning_rate * dw
b = b - learning_rate * db
# Record the costs
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 training examples
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
def predict(w, b, X):
m = X.shape[1]
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0], 1)
# Compute vector "A" predicting the probabilities of a cat being present in the picture
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
# Convert probabilities A[0,i] to actual predictions p[0,i]
Y_prediction[0, i] = 1 if A[0, i] > 0.5 else 0
assert(Y_prediction.shape == (1, m))
return Y_prediction
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
# initialize parameters with zeros
w, b = initialize_with_zeros(X_train.shape[0])
# Gradient descent
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
# Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
# lr_utils.py
import numpy as np
import h5py
def load_dataset():
train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
【深度学习】吴恩达网易公开课练习(class1 week2)的更多相关文章
- 【深度学习】吴恩达网易公开课练习(class1 week4)
概要 class1 week3的任务是实现单隐层的神经网络代码,而本次任务是实现有L层的多层深度全连接神经网络.关键点跟class3的基本相同,算清各个参数的维度即可. 关键变量: m: 训练样本数量 ...
- 【深度学习】吴恩达网易公开课练习(class1 week3)
知识点梳理 python工具使用: sklearn: 数据挖掘,数据分析工具,内置logistic回归 matplotlib: 做图工具,可绘制等高线等 绘制散点图: plt.scatter(X[0, ...
- 【深度学习】吴恩达网易公开课练习(class2 week1 task2 task3)
正则化 定义:正则化就是在计算损失函数时,在损失函数后添加权重相关的正则项. 作用:减少过拟合现象 正则化有多种,有L1范式,L2范式等.一种常用的正则化公式 \[J_{regularized} = ...
- 【深度学习】吴恩达网易公开课练习(class2 week1)
权重初始化 参考资料: 知乎 CSDN 权重初始化不能全部为0,不能都是同一个值.原因是,如果所有的初始权重是相同的,那么根据前向和反向传播公式,之后每一个权重的迭代过程也是完全相同的.结果就是,无论 ...
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
- cousera 深度学习 吴恩达 第一课 第二周 学习率对优化结果的影响
本文代码实验地址: https://github.com/guojun007/logistic_regression_learning_rate cousera 上的作业是 编写一个 logistic ...
- 2017年度好视频,吴恩达、李飞飞、Hinton、OpenAI、NIPS、CVPR、CS231n全都在
我们经常被问:机器翻译迭代了好几轮,专业翻译的饭碗都端不稳了,字幕组到底还能做什么? 对于这个问题,我们自己感受最深,却又来不及解释,就已经边感受边做地冲出去了很远,摸爬滚打了一整年. 其实,现在看来 ...
- 第19月第8天 斯坦福大学公开课机器学习 (吴恩达 Andrew Ng)
1.斯坦福大学公开课机器学习 (吴恩达 Andrew Ng) http://open.163.com/special/opencourse/machinelearning.html 笔记 http:/ ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
随机推荐
- python中前后端通信方法Ajax和ORM映射(form表单提交)
后端从数据库获取数据给到前端: 第一种方式: admin.py文件代码: @admin.route('/showList') def show(): # 获取数据库所有文章数据,得到一个个对象 res ...
- python 多线程小方法
import time from multiprocessing import Process, Lock, JoinableQueue from multiprocessing import Sem ...
- Python 17 web框架&Django
本节内容 1.html里面的正则表达式 2.web样式简介 3.Django创建工程 Html里的正则表达式 test 用来判断字符串是否符合规定的正则 rep.test('....') ...
- 关于each other terminal
LD_LIBRARY_PATH shouldn't contain the current directory I am trying to build a self-contain GLIBC 2. ...
- mysql 原理 ~ redo
一 简介:redo log二 文件 ib_logfile0 ib_logfile1 两个redo log 默认为一组 循环覆盖写入三 相关参数 innodb_log_file_size=256 ...
- 51nod 1437 迈克步 单调栈
利用单调栈高效的求出,一个数a[i]在哪个区间内可作为最小值存在. 正向扫描,求出a[i]可做为最小值的区间的左边界 反向扫描,求出a[i]可作为最小值的区间的右边界 r[i] - l[i] +1 就 ...
- 20165221 JAVA第五周学习心得
课本知识点 内部类与异常类 内部类:在一个类中定义另一个类 特点:外嵌类的成员在内部类仍然有效,内部类也可调用外嵌类的方法,内部类的类体不能声明类变量及类方法 非内部类不能是static类 匿名类:创 ...
- zookeeper安装教程
zookeeper 一.单机安装 1.1 下载 1.2 安装 1.3 配置 1.4 启动和停止 二.伪集群模式 2.1 zookeeper1配置 2.2 zookeeper2配置 2.3 zooke ...
- ActiveMQ使用
一.Windows安装ActiveMQ 1.下载解压 2.启动服务 二.Linux安装ActiveMQ 1.下载解压 2.启动访问 三.队列模式 1.创建maven项目 2.生产者 3.消费者 四.主 ...
- Firefox is already running,实际后台查不到进程了
Firefox is already running, but is not responding. To open a new window, you must first close the ex ...