TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)
from __future__ import print_function
from tensorflow.examples.tutorials.mnist import input_data
#加载数据集
mnist = input_data.read_data_sets(r"C:/Users/HPBY/tem/data/",one_hot=True)#加载本地数据 以独热编码形式
import tensorflow as tf
#设置超参
learning_rate = 0.01 #设置学习率
num_step = #训练次数
batch_size = #批次
display_step = #多少次显示一次结果 #设置网络参数
n_hidden_1 = #隐含层1 256节点
n_hidden_2 = #隐含层2 256节点
num_inputs = #输入一位向量28*
num_class = #-9的数字一共10个分类 X = tf.placeholder("float",[None, num_inputs]#占位符784输入 10输出
Y = tf.placeholder("float",[None, num_class])
# 储存网络层权重和偏置值
weights={#随机初始化并权重和偏置值
'h1' : tf.Variable(tf.random_normal([num_inputs, n_hidden_1])),
'h2' : tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out' : tf.Variable(tf.random_normal([n_hidden_2, num_class]))
} biases = {
'b1' : tf.Variable(tf.random_normal([n_hidden_1])),
'b2' : tf.Variable(tf.random_normal([n_hidden_2])),
'out' :tf.Variable(tf.random_normal([num_class]))
}
#创建模型
def neural_net(x):
#全连接隐含层1,2隐含层256个节点
layer_1 = tf.add(tf.matmul(x,weights['h1']), biases['b1'])#matmul是计算
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']),biases['b2'])
out_layer = tf.matmul(layer_2, weights['out'])+biases['out']
return out_layer
#构建模型
logits = neural_net(X) #定义损失函数和优化器
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=Y))
opt = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = opt.minimize(loss_op) #评价模型
correct_pred = tf.equal(tf.argmax(logits,), tf.argmax(Y, ))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) #初始化变量
init = tf.global_variables_initializer()
#开始训练
with tf.Session() as sess:
sess.run(init) for step in range(,num_step+):
batch_x, batch_y =mnist.train.next_batch(batch_size) sess.run(train_op,feed_dict={X:batch_x, Y:batch_y}) if step % display_step == or step == :
loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
Y: batch_y})
print("Step " + str(step) + ", Minibatch Loss= " + \
"{:.4f}".format(loss) + ", Training Accuracy= " + \
"{:.3f}".format(acc)) print("Optimization Finished!") # Calculate accuracy for MNIST test images
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={X: mnist.test.images,
Y: mnist.test.labels}))
数据集来自 http://yann.lecun.com/exdb/mnist/ 以本地加载方式加载数据集
神经网络模型如下:

独热编码参考https://www.cnblogs.com/zongfa/p/9305657.html
很简单的一种编码方式也经常用到
比如我们有“今天刀塔本子出了吗”这个形式的9个不同的词,那么我们独热编码就会形成一个九维的向量,
今是第1个词表示的向量为[1,0,0,0,0,0,0,0,0]
刀是第3个词表示的向量为[0,0,1,0,0,0,0,0,0]
神经网络原理与推导参考程序媛小姐姐的BP神经网络讲解,非常详细:http://www.cnblogs.com/charlotte77/p/5629865.html
TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)的更多相关文章
- TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集
1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...
- 搭建简单模型训练MNIST数据集
# -*- coding = utf-8 -*- # @Time : 2021/3/16 # @Author : pistachio # @File : test1.py # @Software : ...
- Tensorflow学习教程------普通神经网络对mnist数据集分类
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 #coding:utf-8 import tensorflow as tf from tensorflow.exam ...
- 使用一层神经网络训练mnist数据集
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...
- mxnet卷积神经网络训练MNIST数据集测试
mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging. ...
- TensorFlow 训练MNIST数据集(2)—— 多层神经网络
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...
- TensorFlow——CNN卷积神经网络处理Mnist数据集
CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...
- 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
随机推荐
- 猴子分桃—Python
def f(): for i in range(3120,4000): flag = 1 k=i for j in range(5): if i%5==1: i=(i//5)*4 else: flag ...
- 面向对象编程导论 An Introduction to Object-Oriented Programming (Timothy 著)
第1章 面向对象思想 第2章 抽象 第3章 面向对象设计 第4章 类和方法 第5章 消息,实例和初始化 第6章 案例研究: 八皇后问题 第7章 研究研究: 台球游戏 第8章 继承与替换 第9章 案例研 ...
- Thing in java 第5章,初始化和清理,练习题答案
/** * Created by Sandy.Liu on 2018/7/28. * Thinking in java version 4, chapter 5, practice 2 * Creat ...
- linux远程windows桌面
rdesktop,例子如下,-f为全屏,-a为颜色设置 rdesktop -f -a 32 192.168.88.235
- thinkphp框架 的 链接数据库和操作数据
框架有时会用到数据库的内容,在"ThinkPhp框架知识"的那篇随笔中提到过,现在这篇随笔详细的描述下. 一.链接数据库 (1)找到模块文件夹中的Conf文件夹,然后进行编写con ...
- (一)CentOS6.3安装Hadoop2.6.5
1.准备环境 下载CentOS: https://www.centos.org/download/ 下载JDK: https://www.oracle.com/technetwork/java/jav ...
- numpy和matploptlib
numpy Numpy介绍 编辑 一个用python实现的科学计算,包括:1.一个强大的N维数组对象Array:2.比较成熟的(广播)函数库:3.用于整合C/C++和Fortran代码的工具包:4.实 ...
- 廖雪峰Java9正则表达式-1正则表达式入门-1正则表达式简介
1.使用代码来判断字符串 场景: 判断字符串是否是有效的电话号码:"010-12345678", "123ABC456" 判断字符串是否是有效的电子邮箱地址:& ...
- Makefile工程管理器及万能模板
Linux 环境下的程序员如果不会使用GNU make来构建和管理自己的工程,应该不能算是一个合格的专业程序员,至少不能称得上是 Unix程序员.在 Linux(unix )环境下使用GNU 的m ...
- Consul集群搭建 2Server+ 3Client
环境说明: 192.168.202.177 consul-server01 192.168.202.177 consul-server02192.168.202.174 mysql server no ...