[CF1137E]Train Car Selection[维护凸壳]
题意
分析
首先,如果加到了车头所有之前的车厢都不可能成为答案。
如果加到了车尾,容易发现对于 \(x_2<x_3\) 而言在某个时刻会出现 2 又比 3 优的情况。
具体来讲,如果存在 \(sx_3+b+y_3\ge sx_2+b+y_2\) ,那么 2 比 3 优。
推一推:\(-s<\frac{y_3-y_2}{x_3-x_2}\) ,所以维护一个下凸壳即可。
时间复杂度 \(O(n)\) 。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline bool Max(T &a, T b){return a < b ? a = b, 1 : 0;}
template <typename T> inline bool Min(T &a, T b){return a > b ? a = b, 1 : 0;}
const int N = 3e5 + 7;
int n, m;
int tl;
LL k, b, val[N], tot;
typedef pair<LL, LL> pii;
#define mp make_pair
#define fi first
#define se second
pii q[N];
double getk(pii a, pii b) { return 1.0 * (b.se - a.se) / (b.fi - a.fi);}
LL calc(pii a) {
return a.fi * k + a.se + b;
}
int main() {
n = gi(), m = gi();
q[tl = 1] = mp(0, 0);
while(m--) {
int opt = gi();
if(opt == 1) {
q[tl = 1] = mp(0, 0);
n += gi();
k = b = 0;
}
if(opt == 2) {
pii now = mp(n, -(k * n + b));
while(tl > 1 && getk(q[tl], now) <= getk(q[tl - 1], q[tl])) --tl;
n += gi();
q[++tl] = now;
}
if(opt == 3) b += gi(), k += gi();
while(tl > 1 && calc(q[tl]) >= calc(q[tl - 1])) --tl;
printf("%lld %lld\n", q[tl].first + 1, calc(q[tl]));
}
return 0;
}
[CF1137E]Train Car Selection[维护凸壳]的更多相关文章
- XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Khamovniki Problem J Stairways解题报告(分块+维护凸壳)
首先ORZ一发Claris聚聚的题解:http://www.cnblogs.com/clrs97/p/8689215.html,不然我可能没机会补过这道神题了. 这里写一个更详细的题解吧(我还是太菜了 ...
- bzoj2402 陶陶的难题II 分数规划+树剖+线段树维护凸壳+二分
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2402 题解 看上去很像分数规划的模型.于是就二分吧.令 \[ \begin{align*}\f ...
- ZOJ 3937 More Health Points (2016 浙江省赛 B题,可持久维护凸壳)
题目链接 2016 ZJCPC Problem B 题意 CF 660F的树上版本. 其他做的方法都差不多,关键是把凸壳放到树上. 每次确定扔掉几个元素的时候直接$O(1)$修改(先不清楚这个位置 ...
- CF1137E Train Car Selection(单调栈维护凸函数)
首先本题的关键是一次性加0操作只有第一个0是有用的.然后对于1 k操作,其实就是把之前的所有数删除.对于其他的情况,维护一次函数的和,将(i,a[i])看成平面上的一个点,用单调栈维护一下. #inc ...
- hdu 3842 Machine Works(cdq分治维护凸壳)
题目链接:hdu 3842 Machine Works 详细题解: HDU 3842 Machine Works cdq分治 斜率优化 细节比较多,好好体会一下. 在维护斜率的时候要考虑x1与x2是否 ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- Codeforces Round #344 (Div. 2) E. Product Sum 维护凸壳
E. Product Sum 题目连接: http://www.codeforces.com/contest/631/problem/E Description Blake is the boss o ...
- CF1137E. Train Car Selection(可删堆)
题面 三个操作 1.在当前数列最左端加入\(k\)个初始为\(0\)的数 2.在当前数列最右端加入\(k\)个初始为\(0\)的数 3.将当前数列从左到右第\(i\)个数加上\(b+(i-1)k(b& ...
- [BZOJ2726][SDOI2012]任务安排(DP+凸壳二分)
2726: [SDOI2012]任务安排 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1580 Solved: 466[Submit][Statu ...
随机推荐
- spring Boot 出现:org.springframework.context.ApplicationContextException: Unable to start ServletWebServerApplicationContext due to missing ServletWebServerFactory bean.
org.springframework.context.ApplicationContextException: Unable to start ServletWebServerApplication ...
- 页面间固定参数,通过cookie传值
最后在做的页面,比如用户数据(用户头像,名称,年龄)这些信息,因为大部分页面都要用,之前是通过url地址传,另一页面接收.考虑到这样做会让url过长,因此,尝试使用cookie,把固定的值保存在coo ...
- Jmeter和Loadrunner的异同
1.jmeter的架构跟loadrunner原理一样,都是通过中间代理,监控&收集并发客户端发现的指令,把他们生成脚本,再发送到应用服务器,再监控服务器反馈的结果的一个过程. 2.分布式中间代 ...
- 账号配置vue版本的扫码下单以及对店铺进行装修的步骤
新版vue配置说明文档 管理员后台: 1.配置管理-店铺配置(子账号)-扫码点餐tab页-开启vue版 2.配置管理-店铺配置(主账号)-扫码点餐tab页-开通装修配置 商家后台: 1.主账号-门店设 ...
- php学习----文件系统
PHP文件系统之读取文件内容 PHP具有丰富的文件操作函数,最简单的读取文件的函数为file_get_contents,可以将整个文件全部读取到一个字符串中. $content = file_get_ ...
- JavaScript -- 时光流逝(二):js中数组的方法
JavaScript -- 知识点回顾篇(二):js中数组的方法 1. 数组 (1)定义数组,数组赋值 <script type="text/javascript"> ...
- 解决git push时发现有超过100M的文件时,删除文件后,发现还是提交不上去的问题
我这里故意放了一个超过100M的文件 后续,git add ,git commit 然后,git push 此时会发现出现了错误.如果,我们再这里直接在文件系统中删除这个大的文件,然后再次提交,会发现 ...
- 17秋 软件工程 第六次作业 Beta冲刺
题目:团队作业--Beta冲刺 Scrum Beta Scrum1 Beta Scrum2 Beta Scrum3 Beta Scrum4 Beta Scrum5 总结博客 总结博客
- python3编写网络爬虫19-app爬取
一.app爬取 前面都是介绍爬取Web网页的内容,随着移动互联网的发展,越来越多的企业并没有提供Web页面端的服务,而是直接开发了App,更多信息都是通过App展示的 App爬取相比Web端更加容易 ...
- Ubuntu下导入PySpark到Shell和Pycharm中(未整理)
实习后面需要用到spark,虽然之前跟了edX的spark的课程以及用spark进行machine learning,但那个环境是官方已经搭建好的,但要在自己的系统里将PySpark导入shell(或 ...