本章,我们对java 管道进行学习。

转载请注明出处:http://www.cnblogs.com/skywang12345/p/io_04.html

java 管道介绍

在java中,PipedOutputStreamPipedInputStream分别是管道输出流和管道输入流。
它们的作用是让多线程可以通过管道进行线程间的通讯。在使用管道通信时,必须将PipedOutputStream和PipedInputStream配套使用。
使用管道通信时,大致的流程是:我们在线程A中向PipedOutputStream中写入数据,这些数据会自动的发送到与PipedOutputStream对应的PipedInputStream中,进而存储在PipedInputStream的缓冲中;此时,线程B通过读取PipedInputStream中的数据。就可以实现,线程A和线程B的通信。

PipedOutputStream和PipedInputStream源码分析

下面介绍PipedOutputStream和PipedInputStream的源码。在阅读它们的源码之前,建议先看看源码后面的示例。待理解管道的作用和用法之后,再看源码,可能更容易理解。
此外,由于在“java io系列03之 ByteArrayOutputStream的简介,源码分析和示例(包括OutputStream)”中已经对PipedOutputStream的父类OutputStream进行了介绍,这里就不再介绍OutputStream。
                 在“java io系列02之 ByteArrayInputStream的简介,源码分析和示例(包括InputStream)”中已经对PipedInputStream的父类InputStream进行了介绍,这里也不再介绍InputStream。

1. PipedOutputStream 源码分析(基于jdk1.7.40)

 package java.io;

 import java.io.*;

 public class PipedOutputStream extends OutputStream {

     // 与PipedOutputStream通信的PipedInputStream对象
private PipedInputStream sink; // 构造函数,指定配对的PipedInputStream
public PipedOutputStream(PipedInputStream snk) throws IOException {
connect(snk);
} // 构造函数
public PipedOutputStream() {
} // 将“管道输出流” 和 “管道输入流”连接。
public synchronized void connect(PipedInputStream snk) throws IOException {
if (snk == null) {
throw new NullPointerException();
} else if (sink != null || snk.connected) {
throw new IOException("Already connected");
}
// 设置“管道输入流”
sink = snk;
// 初始化“管道输入流”的读写位置
// int是PipedInputStream中定义的,代表“管道输入流”的读写位置
snk.in = -1;
// 初始化“管道输出流”的读写位置。
// out是PipedInputStream中定义的,代表“管道输出流”的读写位置
snk.out = 0;
// 设置“管道输入流”和“管道输出流”为已连接状态
// connected是PipedInputStream中定义的,用于表示“管道输入流与管道输出流”是否已经连接
snk.connected = true;
} // 将int类型b写入“管道输出流”中。
// 将b写入“管道输出流”之后,它会将b传输给“管道输入流”
public void write(int b) throws IOException {
if (sink == null) {
throw new IOException("Pipe not connected");
}
sink.receive(b);
} // 将字节数组b写入“管道输出流”中。
// 将数组b写入“管道输出流”之后,它会将其传输给“管道输入流”
public void write(byte b[], int off, int len) throws IOException {
if (sink == null) {
throw new IOException("Pipe not connected");
} else if (b == null) {
throw new NullPointerException();
} else if ((off < 0) || (off > b.length) || (len < 0) ||
((off + len) > b.length) || ((off + len) < 0)) {
throw new IndexOutOfBoundsException();
} else if (len == 0) {
return;
}
// “管道输入流”接收数据
sink.receive(b, off, len);
} // 清空“管道输出流”。
// 这里会调用“管道输入流”的notifyAll();
// 目的是让“管道输入流”放弃对当前资源的占有,让其它的等待线程(等待读取管道输出流的线程)读取“管道输出流”的值。
public synchronized void flush() throws IOException {
if (sink != null) {
synchronized (sink) {
sink.notifyAll();
}
}
} // 关闭“管道输出流”。
// 关闭之后,会调用receivedLast()通知“管道输入流”它已经关闭。
public void close() throws IOException {
if (sink != null) {
sink.receivedLast();
}
}
}

2. PipedInputStream 源码分析(基于jdk1.7.40)

 package java.io;

 public class PipedInputStream extends InputStream {
// “管道输出流”是否关闭的标记
boolean closedByWriter = false;
// “管道输入流”是否关闭的标记
volatile boolean closedByReader = false;
// “管道输入流”与“管道输出流”是否连接的标记
// 它在PipedOutputStream的connect()连接函数中被设置为true
boolean connected = false; Thread readSide; // 读取“管道”数据的线程
Thread writeSide; // 向“管道”写入数据的线程 // “管道”的默认大小
private static final int DEFAULT_PIPE_SIZE = 1024; protected static final int PIPE_SIZE = DEFAULT_PIPE_SIZE; // 缓冲区
protected byte buffer[]; //下一个写入字节的位置。in==out代表满,说明“写入的数据”全部被读取了。
protected int in = -1;
//下一个读取字节的位置。in==out代表满,说明“写入的数据”全部被读取了。
protected int out = 0; // 构造函数:指定与“管道输入流”关联的“管道输出流”
public PipedInputStream(PipedOutputStream src) throws IOException {
this(src, DEFAULT_PIPE_SIZE);
} // 构造函数:指定与“管道输入流”关联的“管道输出流”,以及“缓冲区大小”
public PipedInputStream(PipedOutputStream src, int pipeSize)
throws IOException {
initPipe(pipeSize);
connect(src);
} // 构造函数:默认缓冲区大小是1024字节
public PipedInputStream() {
initPipe(DEFAULT_PIPE_SIZE);
} // 构造函数:指定缓冲区大小是pipeSize
public PipedInputStream(int pipeSize) {
initPipe(pipeSize);
} // 初始化“管道”:新建缓冲区大小
private void initPipe(int pipeSize) {
if (pipeSize <= 0) {
throw new IllegalArgumentException("Pipe Size <= 0");
}
buffer = new byte[pipeSize];
} // 将“管道输入流”和“管道输出流”绑定。
// 实际上,这里调用的是PipedOutputStream的connect()函数
public void connect(PipedOutputStream src) throws IOException {
src.connect(this);
} // 接收int类型的数据b。
// 它只会在PipedOutputStream的write(int b)中会被调用
protected synchronized void receive(int b) throws IOException {
// 检查管道状态
checkStateForReceive();
// 获取“写入管道”的线程
writeSide = Thread.currentThread();
// 若“写入管道”的数据正好全部被读取完,则等待。
if (in == out)
awaitSpace();
if (in < 0) {
in = 0;
out = 0;
}
// 将b保存到缓冲区
buffer[in++] = (byte)(b & 0xFF);
if (in >= buffer.length) {
in = 0;
}
} // 接收字节数组b。
synchronized void receive(byte b[], int off, int len) throws IOException {
// 检查管道状态
checkStateForReceive();
// 获取“写入管道”的线程
writeSide = Thread.currentThread();
int bytesToTransfer = len;
while (bytesToTransfer > 0) {
// 若“写入管道”的数据正好全部被读取完,则等待。
if (in == out)
awaitSpace();
int nextTransferAmount = 0;
// 如果“管道中被读取的数据,少于写入管道的数据”;
// 则设置nextTransferAmount=“buffer.length - in”
if (out < in) {
nextTransferAmount = buffer.length - in;
} else if (in < out) { // 如果“管道中被读取的数据,大于/等于写入管道的数据”,则执行后面的操作
// 若in==-1(即管道的写入数据等于被读取数据),此时nextTransferAmount = buffer.length - in;
// 否则,nextTransferAmount = out - in;
if (in == -1) {
in = out = 0;
nextTransferAmount = buffer.length - in;
} else {
nextTransferAmount = out - in;
}
}
if (nextTransferAmount > bytesToTransfer)
nextTransferAmount = bytesToTransfer;
// assert断言的作用是,若nextTransferAmount <= 0,则终止程序。
assert(nextTransferAmount > 0);
// 将数据写入到缓冲中
System.arraycopy(b, off, buffer, in, nextTransferAmount);
bytesToTransfer -= nextTransferAmount;
off += nextTransferAmount;
in += nextTransferAmount;
if (in >= buffer.length) {
in = 0;
}
}
} // 检查管道状态
private void checkStateForReceive() throws IOException {
if (!connected) {
throw new IOException("Pipe not connected");
} else if (closedByWriter || closedByReader) {
throw new IOException("Pipe closed");
} else if (readSide != null && !readSide.isAlive()) {
throw new IOException("Read end dead");
}
} // 等待。
// 若“写入管道”的数据正好全部被读取完(例如,管道缓冲满),则执行awaitSpace()操作;
// 它的目的是让“读取管道的线程”管道产生读取数据请求,从而才能继续的向“管道”中写入数据。
private void awaitSpace() throws IOException { // 如果“管道中被读取的数据,等于写入管道的数据”时,
// 则每隔1000ms检查“管道状态”,并唤醒管道操作:若有“读取管道数据线程被阻塞”,则唤醒该线程。
while (in == out) {
checkStateForReceive(); /* full: kick any waiting readers */
notifyAll();
try {
wait(1000);
} catch (InterruptedException ex) {
throw new java.io.InterruptedIOException();
}
}
} // 当PipedOutputStream被关闭时,被调用
synchronized void receivedLast() {
closedByWriter = true;
notifyAll();
} // 从管道(的缓冲)中读取一个字节,并将其转换成int类型
public synchronized int read() throws IOException {
if (!connected) {
throw new IOException("Pipe not connected");
} else if (closedByReader) {
throw new IOException("Pipe closed");
} else if (writeSide != null && !writeSide.isAlive()
&& !closedByWriter && (in < 0)) {
throw new IOException("Write end dead");
} readSide = Thread.currentThread();
int trials = 2;
while (in < 0) {
if (closedByWriter) {
/* closed by writer, return EOF */
return -1;
}
if ((writeSide != null) && (!writeSide.isAlive()) && (--trials < 0)) {
throw new IOException("Pipe broken");
}
/* might be a writer waiting */
notifyAll();
try {
wait(1000);
} catch (InterruptedException ex) {
throw new java.io.InterruptedIOException();
}
}
int ret = buffer[out++] & 0xFF;
if (out >= buffer.length) {
out = 0;
}
if (in == out) {
/* now empty */
in = -1;
} return ret;
} // 从管道(的缓冲)中读取数据,并将其存入到数组b中
public synchronized int read(byte b[], int off, int len) throws IOException {
if (b == null) {
throw new NullPointerException();
} else if (off < 0 || len < 0 || len > b.length - off) {
throw new IndexOutOfBoundsException();
} else if (len == 0) {
return 0;
} /* possibly wait on the first character */
int c = read();
if (c < 0) {
return -1;
}
b[off] = (byte) c;
int rlen = 1;
while ((in >= 0) && (len > 1)) { int available; if (in > out) {
available = Math.min((buffer.length - out), (in - out));
} else {
available = buffer.length - out;
} // A byte is read beforehand outside the loop
if (available > (len - 1)) {
available = len - 1;
}
System.arraycopy(buffer, out, b, off + rlen, available);
out += available;
rlen += available;
len -= available; if (out >= buffer.length) {
out = 0;
}
if (in == out) {
/* now empty */
in = -1;
}
}
return rlen;
} // 返回不受阻塞地从此输入流中读取的字节数。
public synchronized int available() throws IOException {
if(in < 0)
return 0;
else if(in == out)
return buffer.length;
else if (in > out)
return in - out;
else
return in + buffer.length - out;
} // 关闭管道输入流
public void close() throws IOException {
closedByReader = true;
synchronized (this) {
in = -1;
}
}
}

管道通信示例

下面,我们看看多线程中通过管道通信的例子。例子中包括3个类:Receiver.java, PipedStreamTest.java 和 Sender.java。

Receiver.java的代码如下

 import java.io.IOException;   

 import java.io.PipedInputStream;   

 @SuppressWarnings("all")
/**
* 接收者线程
*/
public class Receiver extends Thread { // 管道输入流对象。
// 它和“管道输出流(PipedOutputStream)”对象绑定,
// 从而可以接收“管道输出流”的数据,再让用户读取。
private PipedInputStream in = new PipedInputStream(); // 获得“管道输入流”对象
public PipedInputStream getInputStream(){
return in;
} @Override
public void run(){
readMessageOnce() ;
//readMessageContinued() ;
} // 从“管道输入流”中读取1次数据
public void readMessageOnce(){
// 虽然buf的大小是2048个字节,但最多只会从“管道输入流”中读取1024个字节。
// 因为,“管道输入流”的缓冲区大小默认只有1024个字节。
byte[] buf = new byte[2048];
try {
int len = in.read(buf);
System.out.println(new String(buf,0,len));
in.close();
} catch (IOException e) {
e.printStackTrace();
}
}
// 从“管道输入流”读取>1024个字节时,就停止读取
public void readMessageContinued() {
int total=0;
while(true) {
byte[] buf = new byte[1024];
try {
int len = in.read(buf);
total += len;
System.out.println(new String(buf,0,len));
// 若读取的字节总数>1024,则退出循环。
if (total > 1024)
break;
} catch (IOException e) {
e.printStackTrace();
}
} try {
in.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}

Sender.java的代码如下

 import java.io.IOException;   

 import java.io.PipedOutputStream;
@SuppressWarnings("all")
/**
* 发送者线程
*/
public class Sender extends Thread { // 管道输出流对象。
// 它和“管道输入流(PipedInputStream)”对象绑定,
// 从而可以将数据发送给“管道输入流”的数据,然后用户可以从“管道输入流”读取数据。
private PipedOutputStream out = new PipedOutputStream(); // 获得“管道输出流”对象
public PipedOutputStream getOutputStream(){
return out;
} @Override
public void run(){
writeShortMessage();
//writeLongMessage();
} // 向“管道输出流”中写入一则较简短的消息:"this is a short message"
private void writeShortMessage() {
String strInfo = "this is a short message" ;
try {
out.write(strInfo.getBytes());
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
// 向“管道输出流”中写入一则较长的消息
private void writeLongMessage() {
StringBuilder sb = new StringBuilder();
// 通过for循环写入1020个字节
for (int i=0; i<102; i++)
sb.append("0123456789");
// 再写入26个字节。
sb.append("abcdefghijklmnopqrstuvwxyz");
// str的总长度是1020+26=1046个字节
String str = sb.toString();
try {
// 将1046个字节写入到“管道输出流”中
out.write(str.getBytes());
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}

PipedStreamTest.java的代码如下

 import java.io.PipedInputStream;
import java.io.PipedOutputStream;
import java.io.IOException; @SuppressWarnings("all")
/**
* 管道输入流和管道输出流的交互程序
*/
public class PipedStreamTest { public static void main(String[] args) {
Sender t1 = new Sender(); Receiver t2 = new Receiver(); PipedOutputStream out = t1.getOutputStream(); PipedInputStream in = t2.getInputStream(); try {
//管道连接。下面2句话的本质是一样。
//out.connect(in);
in.connect(out); /**
* Thread类的START方法:
* 使该线程开始执行;Java 虚拟机调用该线程的 run 方法。
* 结果是两个线程并发地运行;当前线程(从调用返回给 start 方法)和另一个线程(执行其 run 方法)。
* 多次启动一个线程是非法的。特别是当线程已经结束执行后,不能再重新启动。
*/
t1.start();
t2.start();
} catch (IOException e) {
e.printStackTrace();
}
}
}

运行结果
this is a short message

说明

(01)
in.connect(out);
将“管道输入流”和“管道输出流”关联起来。查看PipedOutputStream.java和PipedInputStream.java中connect()的源码;我们知道 out.connect(in); 等价于 in.connect(out);
(02)
t1.start(); // 启动“Sender”线程
t2.start(); // 启动“Receiver”线程
先查看Sender.java的源码,线程启动后执行run()函数;在Sender.java的run()中,调用writeShortMessage();
writeShortMessage();的作用就是向“管道输出流”中写入数据"this is a short message" ;这条数据会被“管道输入流”接收到。下面看看这是如何实现的。
先看write(byte b[])的源码,在OutputStream.java中定义。PipedOutputStream.java继承于OutputStream.java;OutputStream.java中write(byte b[])的源码如下:

public void write(byte b[]) throws IOException {
write(b, 0, b.length);
}

实际上write(byte b[])是调用的PipedOutputStream.java中的write(byte b[], int off, int len)函数。查看write(byte b[], int off, int len)的源码,我们发现:它会调用 sink.receive(b, off, len); 进一步查看receive(byte b[], int off, int len)的定义,我们知道sink.receive(b, off, len)的作用就是:将“管道输出流”中的数据保存到“管道输入流”的缓冲中。而“管道输入流”的缓冲区buffer的默认大小是1024个字节

至此,我们知道:t1.start()启动Sender线程,而Sender线程会将数据"this is a short message"写入到“管道输出流”;而“管道输出流”又会将该数据传输给“管道输入流”,即而保存在“管道输入流”的缓冲中。

接下来,我们看看“用户如何从‘管道输入流’的缓冲中读取数据”。这实际上就是Receiver线程的动作。
t2.start() 会启动Receiver线程,从而执行Receiver.java的run()函数。查看Receiver.java的源码,我们知道run()调用了readMessageOnce()。
而readMessageOnce()就是调用in.read(buf)从“管道输入流in”中读取数据,并保存到buf中。
通过上面的分析,我们已经知道“管道输入流in”的缓冲中的数据是"this is a short message";因此,buf的数据就是"this is a short message"。

为了加深对管道的理解。我们接着进行下面两个小试验。
试验一:修改Sender.java

public void run(){
writeShortMessage();
//writeLongMessage();
}

修改为

public void run(){
//writeShortMessage();
writeLongMessage();
}

运行程序。运行结果为:

012345678901234567890123456789abcd

这些数据是通过writeLongMessage()写入到“管道输出流”,然后传送给“管道输入流”,进而存储在“管道输入流”的缓冲中;再被用户从缓冲读取出来的数据。
然后,观察writeLongMessage()的源码。我们可以发现,str的长度是1046个字节,然后运行结果只有1024个字节!为什么会这样呢?
道理很简单:管道输入流的缓冲区默认大小是1024个字节。所以,最多只能写入1024个字节。

观察PipedInputStream.java的源码,我们能了解的更透彻。

private static final int DEFAULT_PIPE_SIZE = 1024;
public PipedInputStream() {
initPipe(DEFAULT_PIPE_SIZE);
}

默认构造函数调用initPipe(DEFAULT_PIPE_SIZE),它的源码如下:

private void initPipe(int pipeSize) {
if (pipeSize <= 0) {
throw new IllegalArgumentException("Pipe Size <= 0");
}
buffer = new byte[pipeSize];
}

从中,我们可以知道缓冲区buffer的默认大小就是1024个字节。

试验二: 在“试验一”的基础上继续修改Receiver.java

public void run(){
readMessageOnce() ;
//readMessageContinued() ;
}

修改为

public void run(){
//readMessageOnce() ;
readMessageContinued() ;
}

运行程序。运行结果为:

012345678901234567890123456789abcd
efghijklmnopqrstuvwxyz

这个结果才是writeLongMessage()写入到“输入缓冲区”的完整数据。


更多内容

1. java 集合系列目录(Category)

2. java io系列01之 IO框架

3. java io系列02之 ByteArrayInputStream的简介,源码分析和示例(包括InputStream)

4. java io系列03之 ByteArrayOutputStream的简介,源码分析和示例(包括OutputStream)

java io系列04之 管道(PipedOutputStream和PipedInputStream)的简介,源码分析和示例的更多相关文章

  1. java io系列12之 BufferedInputStream(缓冲输入流)的认知、源码和示例

    本章内容包括3个部分:BufferedInputStream介绍,BufferedInputStream源码,以及BufferedInputStream使用示例. 转载请注明出处:http://www ...

  2. java io系列13之 BufferedOutputStream(缓冲输出流)的认知、源码和示例

    本章内容包括3个部分:BufferedOutputStream介绍,BufferedOutputStream源码,以及BufferedOutputStream使用示例. 转载请注明出处:http:// ...

  3. java io系列02之 ByteArrayInputStream的简介,源码分析和示例(包括InputStream)

    我们以ByteArrayInputStream,拉开对字节类型的“输入流”的学习序幕.本章,我们会先对ByteArrayInputStream进行介绍,然后深入了解一下它的源码,最后通过示例来掌握它的 ...

  4. java io系列03之 ByteArrayOutputStream的简介,源码分析和示例(包括OutputStream)

    前面学习ByteArrayInputStream,了解了“输入流”.接下来,我们学习与ByteArrayInputStream相对应的输出流,即ByteArrayOutputStream.本章,我们会 ...

  5. java io系列15之 DataOutputStream(数据输出流)的认知、源码和示例

    本章介绍DataOutputStream.我们先对DataOutputStream有个大致认识,然后再深入学习它的源码,最后通过示例加深对它的了解. 转载请注明出处:http://www.cnblog ...

  6. java io系列14之 DataInputStream(数据输入流)的认知、源码和示例

    本章介绍DataInputStream.我们先对DataInputStream有个大致认识,然后再深入学习它的源码,最后通过示例加深对它的了解. 转载请注明出处:http://www.cnblogs. ...

  7. (转)Java中的String为什么是不可变的? -- String源码分析

    背景:被问到很基础的知识点  string  自己答的很模糊 Java中的String为什么是不可变的? -- String源码分析 ps:最好去阅读原文 Java中的String为什么是不可变的 什 ...

  8. Java BAT大型公司面试必考技能视频-1.HashMap源码分析与实现

    视频通过以下四个方面介绍了HASHMAP的内容 一. 什么是HashMap Hash散列将一个任意的长度通过某种算法(Hash函数算法)转换成一个固定的值. MAP:地图 x,y 存储 总结:通过HA ...

  9. 使用react全家桶制作博客后台管理系统 网站PWA升级 移动端常见问题处理 循序渐进学.Net Core Web Api开发系列【4】:前端访问WebApi [Abp 源码分析]四、模块配置 [Abp 源码分析]三、依赖注入

    使用react全家桶制作博客后台管理系统   前面的话 笔者在做一个完整的博客上线项目,包括前台.后台.后端接口和服务器配置.本文将详细介绍使用react全家桶制作的博客后台管理系统 概述 该项目是基 ...

随机推荐

  1. Hibernate结合JPA05

    一. JPA简介 JPA是Java Persistence API的简称,中文名Java持久层Api,是JDK1.5注解或者Xml描述对象-关系表的映射关系,并将运行期的实体类对象持久化Dao数据库中 ...

  2. Linux block(1k) block(4k) 换算 gb

    输入 df  显示1k blocks  大小   再输入  df -h  显示 gb换算大小  结论 block(1k) 计算公式为:  block(1k)   /1024/1000  = xx gb ...

  3. Codeforces Round #432 (Div. 1, based on IndiaHacks Final Round 2017) D. Tournament Construction(dp + 构造)

    题意 一个竞赛图的度数集合是由该竞赛图中每个点的出度所构成的集合. 现给定一个 \(m\) 个元素的集合,第 \(i\) 个元素是 \(a_i\) .(此处集合已经去重) 判断其是否是一个竞赛图的度数 ...

  4. 如何改变Android标准键的颜色?

    本文选自StackOverflow(简称:SOF)精选问答汇总系列文章之一,本系列文章将为读者分享国外最优质的精彩问与答,供读者学习和了解国外最新技术,本文为大家讲解如何改变Android标准键的颜色 ...

  5. Android undefined intent constructor错误?

    本文选自StackOverflow(简称:SOF)精选问答汇总系列文章之一,本系列文章将为读者分享国外最优质的精彩问与答,供读者学习和了解国外最新技术.在Android中启动Service时出现&qu ...

  6. JS简易弹出层

    目标 实现简易的js弹出框.为了简单灵活的在小项目中使用. 实现思路 研究bootstrap的弹出框效果后,认为层级示意图如下: 层说明 弹出层分为三层.最底层的遮罩层,覆盖在浏览器视口上.它之上是弹 ...

  7. hdu1272 小希的迷宫(并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1272 题目: 小希的迷宫 Time Limit: 2000/1000 MS (Java/Others) ...

  8. jQuery ajax读取本地json文件

    jQuery ajax读取本地json文件 json文件 { "first":[ {"name":"张三","sex": ...

  9. N球M盒

    N球,M盒,由于球是否相同,盒是否相同,盒是否可以为空,共2^3=8种: 1.球同,盒同,盒不可以为空Pm(N)--这符号表示部分数为m的N-分拆的个数,m是P的下标,为了好看我将大写的M弄成小写 2 ...

  10. LOJ#2353 货币兑换

    CDQ分治优化斜率优化DP. 有个结论就是每天买完卖完....知道这个之后考虑今天卖的是哪天买的就能写出n²DP了. 发现形式是fi = max(aibj + cidj)的形式.我们可以把ci除出来, ...