TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area,

https://www.zhihu.com/question/30643044

T/F表示 true/false  表示预测的是不是对的
P/N表示 positive/negative  表示实际数据是正样本还是负样本
P/N表示 positive/negative  表示预测数据是正样本还是负样本
 
TP: 预测为1, 实际为1,预测正确
FP: 预测为1, 实际为0,预测错误
TN: 预测为0,实际为0,预测正确
FN: 预测为0, 实际为1,预测错误

True Positive (真正, TP)被模型预测为正样本,实际为正样本;

False Positive (假正, FP)被模型预测为正样本, 实际为负样本;

True Negative(真负 , TN)被模型预测为负样本,实际为负样本 ;

False Negative(假负 , FN)被模型预测为负样本,实际为正样本;

举例:

实际样本标签  actual_issame             = [1 1 1 1 1 1 0 0 0 0 0]

预测样本结果  predict_issame            = [1 1 0 1 0 1 1 0 0 0 0]

实际样本标签  actual_issame_not       = [0 0 0 0 0 1 1 1 1 1 1]

预测样本结果  predict_issame_not      = [0 0 1 0 1 0 0 1 1 1 1]

正样本个数为6

负样本个数为5

TP + FN = 正样本个数为6

FP + TN = 负样本个数为5

TP = 4  TN = 4  FP = 1  FN = 2

贴一段计算代码

predict_issame = np.less(dist, threshold)
tp = np.sum(np.logical_and(predict_issame, actual_issame))
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame)))
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))

tpr = 0 if (tp+fn==0) else float(tp) / float(tp+fn)
fpr = 0 if (fp+tn==0) else float(fp) / float(fp+tn)
acc = float(tp+tn)/dist.size
return tpr, fpr, acc

以上面的为例

TP = 4  TN = 4  FP = 1  FN = 2

tpr = TP /(TP + FN)= 4/(4+2) = 66.7%

fpr = FP /(FP + TN)= 1 / (1+4) = 20%

acc = (tp+tn) / (总的样本个数) = (4+4) / 11 = 72.7%

True Positive Rate(真正率 , TPR)或灵敏度(sensitivity) 
   TPR = TP /(TP + FN)

True Negative Rate(真负率 , TNR)或特指度(specificity) 
   TNR = TN /(TN + FP)

False Positive Rate (假正率, FPR) 
   FPR = FP /(FP + TN)

False Negative Rate(假负率 , FNR) 
   FNR = FN /(TP + FN)

还有另外两个评价指标,针对正样本的评价指标

准确率precision: TP/ (TP+FP) 预测为正样本中有多少是真正的正样本
召回率recall: TP/ (TP +FN) 正样本有多少被成功预测为正样本
错误接受率: FAR: 同FPR 

ROC曲线: TPR与FPR博弈的过程曲线,在不同阈值判决下

分类器希望的是TPR越大,FPR越小,

降低阈值可以使TPR变大,FPR也会越大

提高阈值可以降低FPR,但是TPR会降低

实际中需要根据实际场景进行合理选择阈值,

比如在人脸识别支付的时候,对FPR比较敏感,FPR越小,错误接收的用户可能性越小,用户的钱财越安全, 这个时候,可以提高阈值,降低FPR,TPR也会下降(用户体验会下降)。

在如精准营销领域的商品推荐模型,模型目的是尽量将商品推荐给感兴趣的用户,若用户对推荐的商品不感兴趣,也不会有很大损失,因此此时TPR相对FPR更重要,这个时候可以降低阈值。

 

TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area,的更多相关文章

  1. 从TP、FP、TN、FN到ROC曲线、miss rate、行人检测评估

    从TP.FP.TN.FN到ROC曲线.miss rate.行人检测评估 想要在行人检测的evaluation阶段要计算miss rate,就要从True Positive Rate讲起:miss ra ...

  2. Precision,Recall,F1的计算

    Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...

  3. 目标检测的评价标准mAP, Precision, Recall, Accuracy

    目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...

  4. 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy

    针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy   真实结果 1 ...

  5. 机器学习基础梳理—(accuracy,precision,recall浅谈)

    一.TP TN FP FN TP:标签为正例,预测为正例(P),即预测正确(T) TN:标签为负例,预测为负例(N),即预测正确(T) FP:标签为负例,预测为正例(P),即预测错误(F) FN:标签 ...

  6. 查准与召回(Precision & Recall)

    Precision & Recall 先看下面这张图来理解了,后面再具体分析.下面用P代表Precision,R代表Recall 通俗的讲,Precision 就是检索出来的条目中(比如网页) ...

  7. 机器学习--如何理解Accuracy, Precision, Recall, F1 score

    当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...

  8. Handling skewed data---trading off precision& recall

    preision与recall之间的权衡 依然是cancer prediction的例子,预测为cancer时,y=1;一般来说做为logistic regression我们是当hθ(x)>=0 ...

  9. 通过Precision/Recall判断分类结果偏差极大时算法的性能

    当我们对某些问题进行分类时,真实结果的分布会有明显偏差. 例如对是否患癌症进行分类,testing set 中可能只有0.5%的人患了癌症. 此时如果直接数误分类数的话,那么一个每次都预测人没有癌症的 ...

随机推荐

  1. flink-jdbc sink

    https://github.com/apache/flink/tree/master/flink-connectors/flink-jdbc/src https://blog.csdn.net/lu ...

  2. numpy数组-截取部分

    import numpy as np a = np.array([1,2,3,4,5]) slice = a[:3] slice[0] = 100 print(a) # 结果 [100,2,3,4,5 ...

  3. C++ STL set和multiset的使用

    C++ STL set和multiset的使用 std::set<int> s;那个s这个对象里面存贮的元素是从小到大排序的,(因为用std::less作为比较工具.) 1,set的含义是 ...

  4. ashx页面返回json字符串|jQuery 的ajax处理请求的纠结问题

    纠结,整了半天的jquery的ajax请求数据. 遇到的问题: 1 ajax方法一直进入error方法里,进入到请求的.ashx页面.这个问题,我未找到是什么原因.反正我使用了一下的代码,就好了. $ ...

  5. 利用es-checker检测当前node对ES6的支持情况

    ode.js发展非常快,对es6特性的支持也越来越良心,但node.js版本很多,各版本对es6的支持度都不一样,为了能清晰的了解各版本对es6特性的支持,需要有一个工具能提供比较清晰的支持说明,甚至 ...

  6. 【驱动】LCD驱动(FrameBuffer)分析

    背景知识 在多媒体的推动下,彩色LCD越来越多地应用到嵌入式系统中,PDA和手机等大多都采用LCD作为显示器材,因此LCD的应用很有实际意义! LCD工作的硬件需求:要使一块LCD正常的显示文字或图像 ...

  7. 百度地图API-搜索地址、定位、点击获取经纬度并标注

    百度地图api:http://developer.baidu.com/map/jsdemo.htm api申请ak:http://lbsyun.baidu.com/ 一.搜索地址.定位.点击获取经纬度 ...

  8. openfire聊天记录插件

    package com.sqj.openfire.chat.logs; import java.io.File; import java.util.Date; import java.util.Lis ...

  9. maven copy jar 插件

     插件比较特殊 eclipse下的 首先声明插件 <pluginManagement> <plugin> <groupId>org.apache.maven.plu ...

  10. 神奇的bug,退出时自动更新时间

    遇到一个神奇的bug,用户退出时,上次登录时间会变成退出时的时间. 于是开始跟踪,发现Laravel在退出时,会做一次脏检查,这时会更新rember_token,这时就会有update操作如下. 而粗 ...