原题地址:https://oj.leetcode.com/problems/recover-binary-search-tree/

题意:

Two elements of a binary search tree (BST) are swapped by mistake.

Recover the tree without changing its structure.

解题思路:这题是说一颗二叉查找树中的某两个节点被错误的交换了,需要恢复成原来的正确的二叉查找树。

算法一:思路很简单,一颗二叉查找树的中序遍历应该是升序的,而两个节点被交换了,那么对这个错误的二叉查找树中序遍历,肯定不是升序的。那我们只需把顺序恢复过来然后进行重新赋值就可以了。开辟两个列表,list用来存储被破坏的二叉查找树的节点值,listp用来存储二叉查找树的节点的指针。然后将list排序,再使用listp里面存储的节点指针赋值就可以了。

代码:

# Definition for a  binary tree node
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None class Solution:
# @param root, a tree node
# @return a tree node
def inorder(self, root, list, listp):
if root:
self.inorder(root.left, list, listp)
list.append(root.val); listp.append(root)
self.inorder(root.right, list, listp)
def recoverTree(self, root):
list = []; listp = []
self.inorder(root, list, listp)
list.sort()
for i in range(len(list)):
listp[i].val = list[i]
return root

算法二:

题目有一个附加要求就是要求空间复杂度为常数空间。而算法一的空间复杂度为O(N),还不够省空间。以下的解法也是中序遍历的写法,只是非常巧妙,使用了一个prev指针。例如一颗被破坏的二叉查找树如下:

        4

       /     \

              2        6

/   \    /   \

1    5  3    7

很明显3和5颠倒了。那么在中序遍历时:当碰到第一个逆序时:为5->4,那么将n1指向5,n2指向4,注意,此时n1已经确定下来了。然后prev和root一直向后遍历,直到碰到第二个逆序时:4->3,此时将n2指向3,那么n1和n2都已经确定,只需要交换节点的值即可。prev指针用来比较中序遍历中相邻两个值的大小关系,很巧妙。

代码:

# Definition for a  binary tree node
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None class Solution:
# @param root, a tree node
# @return a tree node
def FindTwoNodes(self, root):
if root:
self.FindTwoNodes(root.left)
if self.prev and self.prev.val > root.val:
self.n2 = root
if self.n1 == None: self.n1 = self.prev
self.prev = root
self.FindTwoNodes(root.right)
def recoverTree(self, root):
self.n1 = self.n2 = None
self.prev = None
self.FindTwoNodes(root)
self.n1.val, self.n2.val = self.n2.val, self.n1.val
return root

[leetcode]Recover Binary Search Tree @ Python的更多相关文章

  1. LeetCode: Recover Binary Search Tree 解题报告

    Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recove ...

  2. [LeetCode] Recover Binary Search Tree 复原二叉搜索树

    Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...

  3. [Leetcode] Recover Binary Search Tree

    Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...

  4. LeetCode: Recover Binary Search Tree [099]

    [题目] Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without cha ...

  5. [Leetcode] Recover binary search tree 恢复二叉搜索树

    Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...

  6. LeetCode Recover Binary Search Tree——二查搜索树中两个节点错误

    Two elements of a binary search tree (BST) are swapped by mistake.Recover the tree without changing ...

  7. [leetcode]Validate Binary Search Tree @ Python

    原题地址:https://oj.leetcode.com/problems/validate-binary-search-tree/ 题意:检测一颗二叉树是否是二叉查找树. 解题思路:看到二叉树我们首 ...

  8. [线索二叉树] [LeetCode] 不需要栈或者别的辅助空间,完成二叉树的中序遍历。题:Recover Binary Search Tree,Binary Tree Inorder Traversal

    既上篇关于二叉搜索树的文章后,这篇文章介绍一种针对二叉树的新的中序遍历方式,它的特点是不需要递归或者使用栈,而是纯粹使用循环的方式,完成中序遍历. 线索二叉树介绍 首先我们引入“线索二叉树”的概念: ...

  9. 【LeetCode】99. Recover Binary Search Tree 解题报告(Python)

    [LeetCode]99. Recover Binary Search Tree 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/p ...

随机推荐

  1. [CEOI2018]Global warming

    [CEOI2018]Global warming 题目大意: 给定\(n(n\le2\times10^5)\),你可以将任意\(a_{l\sim r}(1\le l\le r\le n)\)每一个元素 ...

  2. 二分法(折半查找法)小demo

    使用此算法,必须有一个前提,那就是数组必须是有序的. package com.ly.tcwireless.international.test; import org.junit.Test; publ ...

  3. There are no packages available for install

    解决方法: ·删除sublime Text 安装目录下Data->Packages目录下的Package Control(如果没有,略过此步骤). ·下载Package Control,下载路径 ...

  4. Temporary ASP.Net Files探究

    了解.net平台的兄弟都知道,.net也是采用动态编译的也就是说我们常说的build生成的dll只是中间代码而在web第一次请求的时候才是真正意义上的编译生成二进制代码这也就是为什么刚编译完第一次打开 ...

  5. MySQL是如何利用索引的

    http://fordba.com/spend-10-min-to-understand-how-mysql-use-index.html

  6. MongoDB入门必读(概念与实战并重)

    MongoDB入门必读(概念与实战并重) 一.概述 MongoDB是一个基于分布式文件存储的数据库开源项目.由C++语言编写.旨在为WEB应用提供可护展的高性能数据存储解决方案. MongoDB是一个 ...

  7. JBPM使用方法、过程记录

    一.How to call Web Service Using JBPM 5, designer https://204.12.228.236/browse.php?u=ObFK10b3HDFCQUN ...

  8. TStream实现多表提交

    TStream实现多表提交 function TynFiredac.SaveDatas(const ATableName, ATableName2: string; ADeltas: TStream; ...

  9. Java web实时进度条整个系统共用(如java上传、下载进度条、导入、导出excel进度条等)

    先上图: 文件上传的: 2017-05-04再次改进.在上传过程中用户可以按 Esc 来取消上传(取消当前上传,或者是全部上传)... 2019-03-26更新进度条显示体验 从服务器上压缩下载: 从 ...

  10. 解决javamail ssl 测试unable to find valid certification path to requested target

    运行 java InstallCert smtp.interdrp.com:465 得到jssecacerts文件后复制到jdk1.6.0_14\jre\lib\security目录 然后再发送邮件就 ...